Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 42
Filter
1.
JTO Clin Res Rep ; 5(4): 100663, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38590728

ABSTRACT

Introduction: It is an ongoing debate how much lung and heart irradiation impact overall survival (OS) after definitive radiotherapy for lung cancer. This study uses a large national cohort of patients with locally advanced NSCLC to investigate the association between OS and irradiation of lung and heart. Methods: Treatment plans were acquired from six Danish radiotherapy centers, and patient characteristics were obtained from national registries. A hybrid segmentation tool automatically delineated the heart and substructures. Dose-volume histograms for all structures were extracted and analyzed using principal component analyses (PCAs). Parameter selection for a multivariable Cox model for OS prediction was performed using cross-validation based on bootstrapping. Results: The population consisted of 644 patients with a median survival of 26 months (95% confidence interval [CI]: 24-29). The cross-validation selected two PCA variables to be included in the multivariable model. PCA1 represented irradiation of the heart and affected OS negatively (hazard ratio, 1.14; 95% CI: 1.04-1.26). PCA2 characterized the left-right balance (right atrium and left ventricle) irradiation, showing better survival for tumors near the right side (hazard ratio, 0.92; 95% CI: 0.84-1.00). Besides the two PCA variables, the multivariable model included age, sex, body-mass index, performance status, tumor dose, and tumor volume. Conclusions: Besides the classic noncardiac risk factors, lung and heart doses had a negative impact on survival, while it is suggested that the left side of the heart is a more radiation dose-sensitive region. The data indicate that overall heart irradiation should be reduced to improve the OS if possible.

2.
Clin Transl Radiat Oncol ; 45: 100737, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38317680

ABSTRACT

Background: The role of early treatment response for patients with locally advanced non-small cell lung cancer (LA-NSCLC) treated with concurrent chemo-radiotherapy (cCRT) is unclear. The study aims to investigate the predictive value of response to induction chemotherapy (iCX) and the correlation with pattern of failure (PoF). Materials and methods: Patients with LA-NSCLC treated with cCRT were included for analyses (n = 276). Target delineations were registered from radiotherapy planning PET/CT to diagnostic PET/CT, in between which patients received iCX. Volume, sphericity, and SUVpeak were extracted from each scan. First site of failure was categorised as loco-regional (LR), distant (DM), or simultaneous LR+M (LR+M). Fine and Gray models for PoF were performed: a baseline model (including performance status (PS), stage, and histology), an image model for squamous cell carcinoma (SCC), and an image model for non-SCC. Parameters included PS, volume (VOL) of tumour, VOL of lymph nodes, ΔVOL, sphericity, SUVpeak, ΔSUVpeak, and oligometastatic disease. Results: Median follow-up was 7.6 years. SCC had higher sub-distribution hazard ratio (sHR) for LRF (sHR = 2.771 [1.577:4.87], p < 0.01) and decreased sHR for DM (sHR = 0.247 [0.125:0.485], p  <  0.01). For both image models, high diagnostic SUVpeak increased risk of LRF (sHR = 1.059 [1.05:1.106], p < 0.01 for SCC, sHR = 1.12 [1.03:1.21], p < 0.01 for non-SCC). Patients with SCC and less decrease in VOL had higher sHR for DM (sHR = 1.025[1.001:1.048] pr. % increase, p = 0.038). Conclusion: Poor response in disease volume was correlated with higher sHR of DM for SCC, no other clear correlation of response and PoF was observed. Histology significantly correlated with PoF with SCC prone to LRF and non-SCC prone to DM as first site of failure. High SUVpeak at diagnosis increased the risk of LRF for both histologies.

3.
Radiother Oncol ; 191: 110065, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38122851

ABSTRACT

BACKGROUND AND PURPOSE: Irradiation of the heart in thoracic cancers raises toxicity concerns. For accurate dose estimation, automated heart and substructure segmentation is potentially useful. In this study, a hybrid automatic segmentation is developed. The accuracy of delineation and dose predictions were evaluated, testing the method's potential within heart toxicity studies. MATERIALS AND METHODS: The hybrid segmentation method delineated the heart, four chambers, three large vessels, and the coronary arteries. The method consisted of a nnU-net heart segmentation and partly atlas- and model-based segmentation of the substructures. The nnU-net training and atlas segmentation was based on lung cancer patients and was validated against a national consensus dataset of 12 patients with breast cancer. The accuracy of dose predictions between manual and auto-segmented heart and substructures was evaluated by transferring the dose distribution of 240 previously treated lung cancer patients to the consensus data set. RESULTS: The hybrid auto-segmentation method performed well with a heart dice similarity coefficient (DSC) of 0.95, with no statistically significant difference between the automatic and manual delineations. The DSC for the chambers varied from 0.78-0.86 for the automatic segmentation and was comparable with the inter-observer variability. Most importantly, the automatic segmentation was as precise as the clinical experts in predicting the dose distribution to the heart and all substructures. CONCLUSION: The hybrid segmentation method performed well in delineating the heart and substructures. The prediction of dose by the automatic segmentation was aligned with the manual delineations, enabling measurement of heart and substructure dose in large cohorts. The delineation algorithm will be available for download.


Subject(s)
Breast Neoplasms , Lung Neoplasms , Humans , Female , Lung Neoplasms/diagnostic imaging , Lung Neoplasms/radiotherapy , Heart/diagnostic imaging , Heart/radiation effects , Algorithms , Image Processing, Computer-Assisted/methods
4.
Acta Oncol ; 62(11): 1426-1432, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37796133

ABSTRACT

BACKGROUND: Adenocarcinoma (AC) and squamous cell carcinoma (SCC) are the most frequent histological subtypes of non-small cell lung cancer (NSCLC). The aim of this study was to investigate how patients with AC and SCC benefit from image-guided adaptive radiotherapy (ART) with tumour match. MATERIAL AND METHODS: Consecutive patients diagnosed with AC or SCC of the lung treated with definitive chemo-radiotherapy before and after the implementation of ART and tumour match were retrospectively included for analyses. Data collection included baseline patient and treatment characteristics in addition to clinical data on radiation pneumonitis (RP), failure, and survival. Patients were divided into four categories based on their histology and treatment before (n = 173 [89 AC and 84 SCC]) and after implementation of ART (n = 240 [141 AC and 99 SCC]). RESULTS: Median follow-up was 5.7 years for AC and 6.3 years for SCC. Mean lung dose decreased for both histologies with ART, whereas mean heart dose only decreased for patients with AC. Incidences of grade 3 and 5 RP decreased for both histologies with ART. Loco-regional failure (LRF) rates decreased significantly for patients with SCC after ART (p = .04), no significant difference was observed for AC. Overall survival (OS) increased significantly for SCC after ART (p < .01): the 2-year OS increased from 31.0% (95% confidence interval [CI] [22.5-42.6]) to 54.5% (95% CI [45.6-65.3]). No significant effect on OS was observed for patients with AC. CONCLUSION: ART and tumour match in the radiotherapeutic treatment of patients with locally advanced NSCLC primarily led to decreased LRF and improved OS for patients with SCC.


Subject(s)
Adenocarcinoma , Carcinoma, Non-Small-Cell Lung , Carcinoma, Squamous Cell , Lung Neoplasms , Humans , Carcinoma, Non-Small-Cell Lung/pathology , Retrospective Studies , Lung Neoplasms/pathology , Carcinoma, Squamous Cell/pathology , Adenocarcinoma/pathology , Neoplasm Staging
5.
Acta Oncol ; 62(10): 1201-1207, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37712509

ABSTRACT

BACKGROUND: This study aimed at investigating the feasibility of developing a deep learning-based auto-segmentation model for the heart trained on clinical delineations. MATERIAL AND METHODS: This study included two different datasets. The first dataset contained clinical heart delineations from the DBCG RT Nation study (1,561 patients). The second dataset was smaller (114 patients), but with corrected heart delineations. Before training the model on the clinical delineations an outlier-detection was performed, to remove cases with gross deviations from the delineation guideline. No outlier detection was performed for the dataset with corrected heart delineations. Both models were trained with a 3D full resolution nnUNet. The models were evaluated with the dice similarity coefficient (DSC), 95% Hausdorff distance (HD95) and Mean Surface Distance (MSD). The difference between the models were tested with the Mann-Whitney U-test. The balance of dataset quantity versus quality was investigated, by stepwise reducing the cohort size for the model trained on clinical delineations. RESULTS: During the outlier-detection 137 patients were excluded from the clinical cohort due to non-compliance with delineation guidelines. The model trained on the curated clinical cohort performed with a median DSC of 0.96 (IQR 0.94-0.96), median HD95 of 4.00 mm (IQR 3.00 mm-6.00 mm) and a median MSD of 1.49 mm (IQR 1.12 mm-2.02 mm). The model trained on the dedicated and corrected cohort performed with a median DSC of 0.95 (IQR 0.93-0.96), median HD95 of 5.65 mm (IQR 3.37 mm-8.62 mm) and median MSD of 1.63 mm (IQR 1.35 mm-2.11 mm). The difference between the two models were found non-significant for all metrics (p > 0.05). Reduction of cohort size showed no significant difference for all metrics (p > 0.05). However, with the smallest cohort size, a few outlier structures were found. CONCLUSIONS: This study demonstrated a deep learning-based auto-segmentation model trained on curated clinical delineations which performs on par with a model trained on dedicated delineations, making it easier to develop multi-institutional auto-segmentation models.


Subject(s)
Deep Learning , Humans , Benchmarking , Heart , Patient Compliance , Image Processing, Computer-Assisted
6.
Int J Radiat Oncol Biol Phys ; 117(5): 1222-1231, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-37423292

ABSTRACT

PURPOSE: Stereotactic body radiation therapy for tumors near the central airways implies high-grade toxic effects, as concluded from the HILUS trial. However, the small sample size and relatively few events limited the statistical power of the study. We therefore pooled data from the prospective HILUS trial with retrospective data from patients in the Nordic countries treated outside the prospective study to evaluate toxicity and risk factors for high-grade toxic effects. METHODS AND MATERIALS: All patients were treated with 56 Gy in 8 fractions. Tumors within 2 cm of the trachea, the mainstem bronchi, the intermediate bronchus, or the lobar bronchi were included. The primary endpoint was toxicity, and the secondary endpoints were local control and overall survival. Clinical and dosimetric risk factors were analyzed for treatment-related fatal toxicity in univariable and multivariable Cox regression analyses. RESULTS: Of 230 patients evaluated, grade 5 toxicity developed in 30 patients (13%), of whom 20 patients had fatal bronchopulmonary bleeding. The multivariable analysis revealed tumor compression of the tracheobronchial tree and maximum dose to the mainstem or intermediate bronchus as significant risk factors for grade 5 bleeding and grade 5 toxicity. The 3-year local control and overall survival rates were 84% (95% CI, 80%-90%) and 40% (95% CI, 34%-47%), respectively. CONCLUSIONS: Tumor compression of the tracheobronchial tree and high maximum dose to the mainstem or intermediate bronchus increase the risk of fatal toxicity after stereotactic body radiation therapy in 8 fractions for central lung tumors. Similar dose constraints should be applied to the intermediate bronchus as to the mainstem bronchi.


Subject(s)
Lung Neoplasms , Radiosurgery , Humans , Prospective Studies , Retrospective Studies , Lung Neoplasms/pathology , Bronchi/radiation effects , Risk Factors , Radiosurgery/adverse effects , Radiosurgery/methods
7.
Radiother Oncol ; 185: 109719, 2023 08.
Article in English | MEDLINE | ID: mdl-37257588

ABSTRACT

BACKGROUND AND PURPOSE: Coronary artery calcium score (CACs) is an excellent marker for survival in non-cancer patients, but its role in locally advanced non-small cell lung cancer (LA-NSCLC) patients remains uncertain. In this study, we hypothesize that CACs is a prognostic marker for survival in a competing risk analysis in LA-NSCLC patients treated with definitive radiotherapy. MATERIALS AND METHODS: We included 644 patients with LA-NSCLC treated in 2014-2015 in Denmark. Baseline patient characteristics were derived from the Danish Lung Cancer Registry. Radiotherapy planning CT scans were used for manual CACs measurements, and the patients were divided into four groups, CACs 0, 1-99, 100-399, and ≥400. A multivariable Cox model utilizing bootstrapping for cross-validation modeled overall survival (OS). RESULTS: The median follow-up time was seven years, and the median OS was 26 months (95% CI 24-29). Within each CAC group 0, 1-99, 100-399, and ≥400 were 172, 182, 143, and 147 patients, respectively. In the univariable analysis, the survival decreased with increasing CACs. However, after adjustment for age, PS, radiotherapy dose, and logarithmic GTV, CACs did not have a statistically significant impact on OS with hazard ratios of 1.04 (95% CI 0.85-1.28), 1.11 (95%CI 0.89-1.43), and 1.16 (95%CI 0.92-1.47) for CACs 1-99, CACs 100-399 and ≥400, respectively. Elevated CACs was observed in 73 % of the patients suggesting a high risk of cardiac comorbidity before radiotherapy. CONCLUSION: CACs did not add prognostic information to our population's classical risk factors, such as tumor volume, performance status, and age; the lung cancer has the highest priority despite the risk of baseline cardiac comorbidity.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Coronary Artery Disease , Lung Neoplasms , Humans , Carcinoma, Non-Small-Cell Lung/pathology , Lung Neoplasms/pathology , Calcium , Coronary Vessels/pathology , Risk Factors , Retrospective Studies
8.
Europace ; 25(4): 1284-1295, 2023 04 15.
Article in English | MEDLINE | ID: mdl-36879464

ABSTRACT

The EU Horizon 2020 Framework-funded Standardized Treatment and Outcome Platform for Stereotactic Therapy Of Re-entrant tachycardia by a Multidisciplinary (STOPSTORM) consortium has been established as a large research network for investigating STereotactic Arrhythmia Radioablation (STAR) for ventricular tachycardia (VT). The aim is to provide a pooled treatment database to evaluate patterns of practice and outcomes of STAR and finally to harmonize STAR within Europe. The consortium comprises 31 clinical and research institutions. The project is divided into nine work packages (WPs): (i) observational cohort; (ii) standardization and harmonization of target delineation; (iii) harmonized prospective cohort; (iv) quality assurance (QA); (v) analysis and evaluation; (vi, ix) ethics and regulations; and (vii, viii) project coordination and dissemination. To provide a review of current clinical STAR practice in Europe, a comprehensive questionnaire was performed at project start. The STOPSTORM Institutions' experience in VT catheter ablation (83% ≥ 20 ann.) and stereotactic body radiotherapy (59% > 200 ann.) was adequate, and 84 STAR treatments were performed until project launch, while 8/22 centres already recruited VT patients in national clinical trials. The majority currently base their target definition on mapping during VT (96%) and/or pace mapping (75%), reduced voltage areas (63%), or late ventricular potentials (75%) during sinus rhythm. The majority currently apply a single-fraction dose of 25 Gy while planning techniques and dose prescription methods vary greatly. The current clinical STAR practice in the STOPSTORM consortium highlights potential areas of optimization and harmonization for substrate mapping, target delineation, motion management, dosimetry, and QA, which will be addressed in the various WPs.


Subject(s)
Catheter Ablation , Tachycardia, Ventricular , Humans , Prospective Studies , Arrhythmias, Cardiac , Heart Ventricles , Catheter Ablation/adverse effects , Catheter Ablation/methods , Treatment Outcome
9.
Radiother Oncol ; 180: 109453, 2023 03.
Article in English | MEDLINE | ID: mdl-36642388

ABSTRACT

BACKGROUND: Coronary artery disease (CAD) has been reported as a late effect following radiation therapy (RT) of early breast cancer (BC). This study aims to report individual RT doses to the heart and cardiac substructures in patients treated with CT-based RT and to investigate if a dose-response relationship between RT dose and CAD exists using modern radiation therapy techniques. METHODS: Patients registered in the Danish Breast Cancer Group database from 2005 to 2016 with CT-based RT were eligible. Among 15,765 patients, the study included 204 with CAD after irradiation (cases) and 408 matched controls. Individual planning CTs were retrieved, the heart and cardiac substructures were delineated and dose-volume parameters were extracted. RESULTS: The median follow-up time was 7.3 years (IQR: 4.6-10.0). Among cases, the median mean heart dose was 1.6 Gy (IQR 0.2-6.1) and 0.8 Gy (0.1-2.9) for left-sided and right-sided patients, respectively (p < 0.001). The highest RT doses were observed in the left ventricle and left anterior descending coronary artery for left-sided RT and in the right atrium and the right coronary artery after right-sided RT. The highest left-minus-right dose-difference was located in the distal part of the left anterior descending coronary artery where also the highest left-versus-right ratio of events was observed. However, no significant difference in the distribution of CAD was observed by laterality. Furthermore, no significant differences in the dose-volume parameters were observed for cases versus controls. CONCLUSIONS: CAD tended to occur in the part of the heart with the highest left-minus- right dose difference, however, no significant risk of CAD was observed at 7 years' median follow-up.


Subject(s)
Breast Neoplasms , Coronary Artery Disease , Humans , Female , Coronary Artery Disease/etiology , Breast Neoplasms/radiotherapy , Heart/radiation effects , Radiotherapy Dosage , Radiation Dosage
10.
Radiother Oncol ; 182: 109494, 2023 05.
Article in English | MEDLINE | ID: mdl-36708923

ABSTRACT

BACKGROUND AND PURPOSE: The Global Clinical Trials RTQA Harmonization Group (GHG) set out to evaluate and prioritize clinical trial quality assurance. METHODS: The GHG compiled a list of radiotherapy quality assurance (QA) tests performed for proton and photon therapy clinical trials. These tests were compared between modalities to assess whether there was a need for different types of assessments per modality. A failure modes and effects analysis (FMEA) was performed to assess the risk of each QA failure. RESULTS: The risk analysis showed that proton and photon therapy shared four out of five of their highest-risk failures (end-to-end anthropomorphic phantom test, phantom tests using respiratory motion, pre-treatment patient plan review of contouring/outlining, and on-treatment/post-treatment patient plan review of dosimetric coverage). While similar trends were observed, proton therapy had higher risk failures, driven by higher severity scores. A sub-analysis of occurrence × severity scores identified high-risk scores to prioritize for improvements in RTQA detectability. A novel severity scaler was introduced to account for the number of patients affected by each failure. This scaler did not substantially alter the ranking of tests, but it elevated the QA program evaluation to the top 20th percentile. This is the first FMEA performed for clinical trial quality assurance. CONCLUSION: The identification of high-risk errors associated with clinical trials is valuable to prioritize and reduce errors in radiotherapy and improve the quality of trial data and outcomes, and can be applied to optimize clinical radiotherapy QA.


Subject(s)
Healthcare Failure Mode and Effect Analysis , Protons , Humans , Photons/therapeutic use , Radiometry , Risk Assessment
11.
Acta Obstet Gynecol Scand ; 102(3): 282-293, 2023 03.
Article in English | MEDLINE | ID: mdl-36695168

ABSTRACT

INTRODUCTION: We identified risk factors and outcomes associated with SARS-CoV-2 infection in pregnancy in a universally tested population according to disease severity and validated information on SARS-CoV-2 during pregnancy in national health registers in Denmark. MATERIAL AND METHODS: Cohort study using data from national registers and medical records including all pregnancies between March 1, 2020 and February 28, 2021. We compared women with a validated positive SARS-CoV-2 test during pregnancy with non-infected pregnant women. Risk factors and pregnancy outcomes were assessed by Poisson and Cox regression models and stratified according to disease severity defined by hospital admission status and admission reason (COVID-19 symptoms or other). Using medical record data on actual period of pregnancy, we calculated predictive values of the SARS-CoV-2 diagnosis in pregnancy in the registers. RESULTS: SARS-CoV-2 infection was detected in 1819 (1.6%) of 111 185 pregnancies. Asthma was associated with infection (relative risk [RR] 1.63, 95% confidence interval [CI] 1.28-2.07). Risk factors for severe COVID-19 disease requiring hospital admission were high body mass index (median ratio 1.06, 95% CI 1.04-1.09), asthma (RR 7.47, 95% CI 3.51-15.90) and gestational age at the time of infection (gestational age 28-36 vs < 22: RR 3.53, 95% CI 1.75-7.10). SARS-CoV-2-infected women more frequently had hypertensive disorders in pregnancy (adjusted hazard ratio [aHR] 1.31, 95% CI 1.04-1.64), early pregnancy loss (aHR 1.37, 95% CI 1.00-1.88), preterm delivery before gestational age 28 (aHR 2.31, 95% CI 1.01-5.26), iatrogenically preterm delivery before gestational age 37 (aHR 1.49, 95% CI 1.01-2.19) and small-for-gestational age children (aHR 1.28, 95% CI 1.05-1.54). The associations were stronger among women admitted to hospital for any reason. The validity of the SARS-CoV-2 diagnosis in relation to pregnancy in the registers compared with medical records showed a negative predictive value of 99.9 (95% CI 99.9-100.0) and a positive predictive value of 82.1 (95% CI 80.4-83.7). CONCLUSIONS: Women infected with SARS-CoV-2 during pregnancy were at increased risk of hypertensive disorders in pregnancy, early pregnancy loss, preterm delivery and having children small for gestational age. The validity of Danish national registers was acceptable for identification of SARS-CoV-2 infection during pregnancy.


Subject(s)
Abortion, Spontaneous , Asthma , COVID-19 , Hypertension, Pregnancy-Induced , Pregnancy Complications, Infectious , Premature Birth , Infant, Newborn , Child , Female , Pregnancy , Humans , Adult , SARS-CoV-2 , Pregnancy Outcome/epidemiology , COVID-19/diagnosis , COVID-19/epidemiology , Cohort Studies , Premature Birth/epidemiology , COVID-19 Testing , Pregnancy Complications, Infectious/diagnosis , Pregnancy Complications, Infectious/epidemiology , Risk Factors , Patient Acuity
12.
Acta Oncol ; 61(8): 994-1003, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35775236

ABSTRACT

BACKGROUND: The aim of this study was to investigate the effect of patient positioning based on either bone or soft-tissue matching for PT in oesophageal cancer and its impact on plan adaptation. MATERIALS AND METHODS: Two retrospective patient cohorts treated with radiotherapy were included in the study. Cohort A consisted of 26 consecutive patients with a planning 4DCT scan (CT1) and a surveillance 4DCT scan (CT2) at fraction ten. Cohort B consisted of 17 patients selected based on large anatomical changes identified during treatment resulting in a rescan (CT2). Mean dose to the iCTV (sum of the CTVs in all respiratory phases) was 50.4 Gy (RBE) in 28 fractions or 41.4 Gy (RBE) in 23 fractions. A nominal pencil beam scanning plan was created using two posterior beams and robust optimization (5 mm setup, 3.5% range). For each patient, two rigid registrations were made between average (avg) CT1 and CT2: a match on the vertebral column (bone match) and a match on the iCTV (soft-tissue match). Robustness towards setup (5 mm) and range (3.5%) errors was evaluated at CT2. Robustness towards respiration was evaluated by recalculation of the plan on all phases of the CT2 scan. Dose coverage <96% would trigger adaptation. The statistical significance (p-value <0.05) between dose coverage for the two registration methods was assessed using the Wilcoxon signed rank test. RESULTS: All plans fulfilled V95%iCTV>99% for the nominal plan and V95%iCTV>97% for all respiratory phases and robustness scenarios at CT1. In two (8%) and three (18%) patients, V95%iCTV<96% on CT2 for Cohort A and B, respectively when bone match was used. For soft-tissue match, V95%iCTV >96% for all patients. V95%iCTV was significantly higher (p-value = 0.0001) for soft-tissue match than bone match. CONCLUSION: Anatomical changes during the treatment course led to target dose deterioration and a need for plan adaptation when using a bone match.


Subject(s)
Esophageal Neoplasms , Proton Therapy , Esophageal Neoplasms/radiotherapy , Humans , Proton Therapy/methods , Radiotherapy Dosage , Retrospective Studies
13.
Radiother Oncol ; 172: 32-41, 2022 07.
Article in English | MEDLINE | ID: mdl-35513132

ABSTRACT

PURPOSE: To compare dose distributions and robustness in treatment plans from eight European centres in preparation for the European randomized phase-III PROTECT-trial investigating the effect of proton therapy (PT) versus photon therapy (XT) for oesophageal cancer. MATERIALS AND METHODS: All centres optimized one PT and one XT nominal plan using delineated 4DCT scans for four patients receiving 50.4 Gy (RBE) in 28 fractions. Target volume receiving 95% of prescribed dose (V95%iCTVtotal) should be >99%. Robustness towards setup, range, and respiration was evaluated. The plans were recalculated on a surveillance 4DCT (sCT) acquired at fraction ten and robustness evaluation was performed to evaluate the effect of respiration and inter-fractional anatomical changes. RESULTS: All PT and XT plans complied with V95%iCTVtotal >99% for the nominal plan and V95%iCTVtotal >97% for all respiratory and robustness scenarios. Lung and heart dose varied considerably between centres for both modalities. The difference in mean lung dose and mean heart dose between each pair of XT and PT plans was in median [range] 4.8 Gy [1.1;7.6] and 8.4 Gy [1.9;24.5], respectively. Patients B and C showed large inter-fractional anatomical changes on sCT. For patient B, the minimum V95%iCTVtotal in the worst-case robustness scenario was 45% and 94% for XT and PT, respectively. For patient C, the minimum V95%iCTVtotal was 57% and 72% for XT and PT, respectively. Patient A and D showed minor inter-fractional changes and the minimum V95%iCTVtotal was >85%. CONCLUSION: Large variability in dose to the lungs and heart was observed for both modalities. Inter-fractional anatomical changes led to larger target dose deterioration for XT than PT plans.


Subject(s)
Esophageal Neoplasms , Proton Therapy , Radiotherapy, Intensity-Modulated , Esophageal Neoplasms/diagnostic imaging , Esophageal Neoplasms/radiotherapy , Humans , Proton Therapy/methods , Protons , Radiotherapy Planning, Computer-Assisted/methods , Radiotherapy, Intensity-Modulated/methods
14.
Acta Oncol ; 61(5): 566-574, 2022 May.
Article in English | MEDLINE | ID: mdl-35289694

ABSTRACT

BACKGROUND: Chemoradiotherapy (CRT) may induce myocardial dysfunction, congestive heart failure, and impaired physical performance in patients with esophageal cancer (EC). We aimed to investigate left ventricular (LV) function at rest and during stress, using echocardiography (echo) and a cardiopulmonary exercise (CPX) test both before and immediately after completing CRT. MATERIAL AND METHODS: Consecutive EC patients referred for curative treatment were enrolled. Patients attended either definitive CRT or neoadjuvant CRT with subsequent surgery. The evaluation included cardiac biomarkers, electrocardiogram, echo, and CPX test. The primary endpoint was changes in left ventricular (LV) global longitudinal strain (GLS) at rest. Secondary endpoints were LV ejection fraction (LVEF), LV diastolic function, LVEF and GLS at peak exercise, and maximal oxygen consumption (VO2max). The trial was registered with ClinicalTrials.gov (NCT03619317). RESULTS: Among 47 patients enrolled (94% male; median age 67 years, range 50-86 years), cardiac examinations were performed a median of three days [Interquartile range (IQR (1-5))] before CRT and one day [IQR (0-6)] after CRT. At rest, GLS and LVEF decreased, 17.6 vs. 16.4% and 56.4 vs. 55.1%, respectively (p = 0.004; p = 0.030). Furthermore, an absolute decrease of at least 5% in LVEF and 2.5% in GLS was noted in 21% of the patients. Signs of LV diastolic dysfunction increased from 13 to 21% (p = ns). VO2max significantly decreased; 21.2 ml/kg/min vs. 18.8 ml/kg/min (p < 0.001). CONCLUSION: LV function and physical performance decreased in EC patients after CRT, and the LV systolic reserve capacity declined. This study highlighted that EC treatment was associated with early cardiac side effects, which may have clinical and prognostic implications.


Subject(s)
Esophageal Neoplasms , Ventricular Function, Left , Aged , Aged, 80 and over , Chemoradiotherapy/adverse effects , Esophageal Neoplasms/therapy , Female , Humans , Male , Middle Aged , Oxygen Consumption , Stroke Volume
15.
Radiother Oncol ; 168: 234-240, 2022 03.
Article in English | MEDLINE | ID: mdl-35121030

ABSTRACT

INTRODUCTION: Tumor match and adaptive radiotherapy based on on-treatment imaging increases the precision of RT. This allows a reduction of treatment volume and, consequently, of the dose to organs at risk. We investigate the clinical benefits of tumor match and adaptive radiotherapy for a cohort of non-small cell lung cancer patients (NSCLC). METHODS: In 2013, tumor match and adaptive radiotherapy based on daily cone-beam CT scans was introduced to ensure adaption of the radiotherapy treatment plan for all patients with significant anatomical changes during radiotherapy. Before 2013, the daily cone-beam CT scans were matched on the vertebra and anatomical changes were not evaluated systematically. To estimate the effect of tumor match and adaptive radiotherapy, 439 consecutive NSCLC patients treated with definitive chemo-radiotherapy (50-66 Gy/25-33 fractions, 2010-2018) were investigated retrospectively. They were split in two groups, pre-ART (before tumor match and adaptive radiotherapy, 184 patients), and ART (after tumor match and adaptive radiotherapy, 255 patients) and compared with respect to clinical, treatment-specific and dosimetric variables (χ2 tests, Mann Whitney U tests), progression, survival and radiation pneumonits (CTCAEv3). Progression-free and overall survival as well as radiation pneumonitis were compared with log-rank tests. Hazard ratios were estimated from Cox proportional hazard regression. RESULTS: No significant differences in stage (p = 0.36), histology (p = 0.35), PS (p = 0.12) and GTV volumes (p = 0.24) were observed. Concomitant chemotherapy was administered more frequently in the ART group (78%) compared to preART (64%), p < 0.001. Median[range] PTV volumes decreased from 456 [71;1262] cm3 (preART) to 270 [31;1166] cm3 (ART), p < 0.001, thereby significantly reducing mean doses to lungs (median, preART 16.4 [1.9;24.7] Gy, ART 12.1 [1.7;19.4] Gy, p < 0.001) and heart (median, preART 8.0 [0.1;32.1] Gy, ART 4.4 [0.1;33.9] Gy, p < 0.001). The incidence of RP at nine months decreased significantly with ART (50% to 20% for symptomatic RP (≥G2), 21% to 7% for severe RP (≥G3), 6% to 0.4% for lethal RP (G5), all p < 0.001). The two-year progression free survival increased from 22% (preART) to 30% (ART), while the overall survival increased from 43% (preART) to 56% (ART). The median overall survival time increased from 20 (preART) to 28 months (ART). CONCLUSION: Tumor match and adaptive radiotherapy significantly decreased radiation pneumonitis, while maintaining loco-regional control. Further, we observed a significantly improved progression-free and overall survival.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Radiotherapy, Intensity-Modulated , Carcinoma, Non-Small-Cell Lung/diagnostic imaging , Carcinoma, Non-Small-Cell Lung/radiotherapy , Humans , Lung Neoplasms/diagnostic imaging , Lung Neoplasms/etiology , Lung Neoplasms/radiotherapy , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted/methods , Radiotherapy, Intensity-Modulated/methods , Retrospective Studies
16.
Acta Oncol ; 61(2): 247-254, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34427497

ABSTRACT

BACKGROUND: This study aimed to develop and validate an automatic multi-atlas segmentation method for delineating the heart and substructures in breast cancer radiation therapy (RT). MATERIAL AND METHODS: The atlas database consisted of non-contrast-enhanced planning CT scans from 42 breast cancer patients, each with one manual delineation of the heart and 22 cardiac substructures. Half of the patients were scanned during free-breathing, the rest were scanned during a deep inspiration breath-hold. The auto-segmentation was developed in the MIM software system and validated geometrically and dosimetrically in two steps: The first validation in a small dataset to ensure consistency of the atlas. This was succeeded by a final test where multiple manual delineations in CT scans of 12 breast cancer patients were compared to the auto-segmentation. For geometric evaluation, the dice similarity coefficient (DSC) and the mean surface distance (MSD) were used. For dosimetric evaluation, the RT doses to each substructure in the manual and the automatic delineations were compared. RESULTS: In the first validation, a high geometric and dosimetric performance between the automatic and manual delineations was observed for all substructures. The final test confirmed a high agreement between the automatic and manual delineations for the heart (DSC = 0.94) and the cardiac chambers (DSC: 0.75-0.86). The difference in MSD between the automatic and manual delineations was low (<4 mm) in all structures. Finally, a high correlation between mean RT doses for the automatic and the manual delineations was observed for the heart and substructures. CONCLUSIONS: An automatic segmentation tool for delineation of the heart and substructures in breast cancer RT was developed and validated with a high correlation between the automatic and manual delineations. The atlas is pivotal for large-scale evaluations of radiation-associated heart disease.


Subject(s)
Breast Neoplasms , Breast Neoplasms/diagnostic imaging , Breast Neoplasms/radiotherapy , Female , Heart/diagnostic imaging , Humans , Organs at Risk , Radiometry , Radiotherapy Planning, Computer-Assisted
17.
BMC Cancer ; 21(1): 940, 2021 Aug 21.
Article in English | MEDLINE | ID: mdl-34418994

ABSTRACT

BACKGROUND: Radiation therapy (RT) plays a key role in curative-intent treatment for locally advanced lung cancer. Radiation induced pulmonary toxicity can be significant for some patients and becomes a limiting factor for radiation dose, suitability for treatment, as well as post treatment quality of life and suitability for the newly introduced adjuvant immunotherapy. Modern RT techniques aim to minimise the radiation dose to the lungs, without accounting for regional distribution of lung function. Many lung cancer patients have significant regional differences in pulmonary function due to smoking and chronic lung co-morbidity. Even though reduction of dose to functional lung has shown to be feasible, the method of preferential functional lung avoidance has not been investigated in a randomised clinical trial. METHODS: In this study, single photon emission computed tomography (SPECT/CT) imaging technique is used for functional lung definition, in conjunction with advanced radiation dose delivery method in randomised, double-blind trial. The study aims to assess the impact of functional lung avoidance technique on pulmonary toxicity and quality of life in patients receiving chemo-RT for lung cancer. Eligibility criteria are biopsy verified lung cancer, scheduled to receive (chemo)-RT with curative intent. Every patient will undergo a pre-treatment perfusion SPECT/CT to identify functional lung. At radiation dose planning, two plans will be produced for all patients on trial. Standard reference plan, without the use of SPECT imaging data, and functional avoidance plan, will be optimised to reduce the dose to functional lung within the predefined constraints. Both plans will be clinically approved. Patients will then be randomised in a 2:1 ratio to be treated according to either the functional avoidance or the standard plan. This study aims to accrue a total of 200 patients within 3 years. The primary endpoint is symptomatic radiation-induced lung toxicity, measured serially 1-12 months after RT. Secondary endpoints include: a quality of life and patient reported lung symptoms assessment, overall survival, progression-free survival, and loco-regional disease control. DISCUSSION: ASPECT trial will investigate functional avoidance method of radiation delivery in clinical practice, and will establish toxicity outcomes for patients with lung cancer undergoing curative chemo-RT. TRIAL REGISTRATION: Clinicaltrials.gov Identifier: NCT04676828 . Registered 1 December 2020.


Subject(s)
Carcinoma, Non-Small-Cell Lung/radiotherapy , Lung Neoplasms/radiotherapy , Organs at Risk/radiation effects , Radiotherapy Planning, Computer-Assisted/methods , Tomography, Emission-Computed, Single-Photon/methods , Carcinoma, Non-Small-Cell Lung/diagnostic imaging , Carcinoma, Non-Small-Cell Lung/pathology , Clinical Trials, Phase II as Topic , Double-Blind Method , Follow-Up Studies , Humans , Lung Neoplasms/diagnostic imaging , Lung Neoplasms/pathology , Multicenter Studies as Topic , Prognosis , Randomized Controlled Trials as Topic
18.
Acta Oncol ; 60(10): 1275-1282, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34224288

ABSTRACT

BACKGROUND: Visual inspections of anatomical changes observed on daily cone-beam CT (CBCT) images are often used as triggers for radiotherapy plan adaptation to avoid unacceptable dose levels to the target or OARs. Direct CBCT dose calculations would improve the ability to adapt only those plans where dosimetric changes are observed. This study investigates the accuracy of dose calculations on CBCTs. MATERIALS AND METHODS: Calibration curves were obtained for CBCT imagers at nine identical accelerators. CBCT scans of a phantom with different density inserts were recorded for two scan modes (Head-Neck and Pelvis) and mean calibration curves were calculated. Subsequently, CBCT scans of the phantom with six different density inserts were recorded, the dose distributions on the CBCTs were calculated and compared to dose on the planning CT (pCT). The uncertainty was quantified by the dosimetric difference between the pCT and the CBCT. The two mean calibration curves were used to calculate the daily delivered CBCT dose for ten Head-Neck-, eleven Lung-, and ten pelvic patients. Additional patient calculations were performed using low-HU empirically corrected calibration curves. Patient doses were compared on target coverage and mean dose, and D1cc for OARs. RESULTS: The dose differences between pCT and CBCT for phantom data were small for all DVH parameters, with mean deviations below ±0.6% for both CBCT modes. For patient data, it was found that low-HU corrected calibration curves performed the best. The mean deviations for the mean dose and coverage of the target were 0.2%±0.7% and 0.1%±0.6%, across all patient groups. CONCLUSION: Dose calculation on CBCT images results in target coverage and mean dose with an accuracy of the order of 1%, which makes this acceptable for clinical use. The CBCT mode specific calibration curves can be used at all identical imaging devices and for all patient groups.


Subject(s)
Cone-Beam Computed Tomography , Radiotherapy, Intensity-Modulated , Calibration , Humans , Phantoms, Imaging , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted
19.
Int J Radiat Oncol Biol Phys ; 111(2): 539-548, 2021 10 01.
Article in English | MEDLINE | ID: mdl-33974885

ABSTRACT

PURPOSE: Proton therapy of esophageal cancer is superior to photon radiation therapy in terms of normal tissue sparing. However, respiratory motion and anatomical changes may compromise target dose coverage owing to density changes, geometric misses, and interplay effects. Here we investigate the combined effect on clinical target volume (CTV) coverage and compare proton therapy with intensity modulated radiation therapy (IMRT). METHODS AND MATERIALS: This study includes 26 patients with esophageal cancer previously treated with IMRT planned on 4-dimensional computed tomography (4D-CT). For each patient, 7 proton pencil beam scanning (PBS) plans were created with different field configurations and optimization strategies. The effect of respiration was investigated by calculating the phase doses, 4D dose, and 4D dynamic dose (including interplay effects). The effect of anatomical changes was investigated by recalculating all plans on all phases of a 4D-CT surveillance scan. RESULTS: The most robust PBS plans were achieved using 2 posterior beams requiring coverage of planning target volume (PTV) and simultaneously using robust optimization (RO) of CTV (2PAPTVRO), resulting in only 1 patient showing V95%CTV <97% in 1 or more phases of the planning CT. For the least robust PBS plans obtained using lateral + posterior beams and CTV-RO, but not requiring PTV coverage (2LPRO), 10 patients showed underdosage. For IMRT, 2 patients showed underdosage. Interplay effects reduced V95%CTV significantly when delivering only 1 fraction, but the effects generally averaged out after 10 fractions. The effect of interplay was significantly larger for RO-only plans compared with plans optimized with RO combined with PTV coverage. Combining the effect of anatomical changes and respiration on the 4D-CT surveillance scan resulted in V95%CTV <97% for 3 2PAPTVRO, 16 2LPRO, and 8 IMRT patients. CONCLUSIONS: PBS using posterior beam angles was more robust to anatomical changes and respiration than IMRT. The effect of respiration was enhanced when anatomical changes were present. Single fraction interplay effects deteriorated the dose distribution but were averaged out after 10 fractions.


Subject(s)
Esophageal Neoplasms/radiotherapy , Proton Therapy/methods , Radiotherapy Planning, Computer-Assisted/methods , Aged , Aged, 80 and over , Esophageal Neoplasms/diagnostic imaging , Esophageal Neoplasms/pathology , Female , Four-Dimensional Computed Tomography , Humans , Male , Middle Aged , Motion , Radiotherapy Dosage , Radiotherapy, Intensity-Modulated , Respiration
20.
Clin Transl Radiat Oncol ; 27: 8-14, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33385069

ABSTRACT

PURPOSE: Prospectively scored radiation pneumonitis (RP) observed in a national, randomized phase II dose-escalation trial for patients with locally advanced non-small cell lung cancer (NSCLC) was investigated. METHODS: Patients with stage IIB-IIIB histologically proven NSCLC were treated with concomitant chemo-radiotherapy (oral Vinorelbine 3times/week) at 60 Gy/30fx (A-59pts) and 66 Gy/33fx (B-58pts) from 2009 to 2013 at five Danish RT centers. Grade 2 RP (CTCAEv3.0) was investigated with univariate analysis for association with clinical and dosimetric parameters, including dyspnea and cough at baseline and during RT. Multivariable logistic regression and Cox regression with regularization were used to find a multivariable model for RP ≥ G2. RESULTS: Despite a tendency of higher mean lung dose in the high-dose arm (median[range] A = 14.9 Gy[5.8,23.1], B = 17.5 Gy[8.6,24.8], p = 0.075), pulmonary toxicities were not significantly different (RP ≥ G2 41%(A) and 52%(B), p = 0.231). A Kaplan Meier analysis of the time to RP ≥ G2 between the two arms did not reach statistical significance (p = 0.180). Statistically significant risk factors for RP ≥ G2 were GTV size (OR = 2.091/100 cm3, p = 0.002), infection at baseline or during RT (OR = 8.087, p = 0.026), dyspnea at baseline (OR = 2.184, p = 0.044) and increase of cough during RT (OR = 2.787, p = 0.008). In the multivariable logistic regression and the Cox regression analysis, the deviances of the most predictive models were within one standard deviation of the null model. CONCLUSION: No statistical difference between the high- and low dose arm was found in the risk of developing RP. The univariate analysis identified target volume, infection, dyspnea at baseline, and increase of cough during RT as risk factors for RP. The number of patients was too small to establish a statistically sound multivariable model.

SELECTION OF CITATIONS
SEARCH DETAIL
...