Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters











Database
Language
Publication year range
1.
Sci Rep ; 2: 549, 2012.
Article in English | MEDLINE | ID: mdl-22870378

ABSTRACT

Just a bit of water enables one to turn a pile of dry sand into a spectacular sandcastle. Too much water however will destabilize the material, as is seen in landslides. Here we investigated the stability of wet sand columns to account for the maximum height of sandcastles. We find that the columns become unstable to elastic buckling under their own weight. This allows to account for the maximum height of the sand column; it is found to increase as the 2/3 power of the base radius of the column. Measuring the elastic modulus of the wet sand, we find that the optimum strength is achieved at a very low liquid volume fraction of about 1%. Knowing the modulus we can quantitatively account for the measured sandcastle heights.

2.
Philos Trans A Math Phys Eng Sci ; 367(1909): 5139-55, 2009 Dec 28.
Article in English | MEDLINE | ID: mdl-19933132

ABSTRACT

We propose a new view on yield stress materials. Dense suspensions and many other materials have a yield stress-they flow only if a large enough shear stress is exerted on them. There has been an ongoing debate in the literature on whether true yield stress fluids exist, and even whether the concept is useful. This is mainly due to the experimental difficulties in determining the yield stress. We show that most if not all of these difficulties disappear when a clear distinction is made between two types of yield stress fluids: thixotropic and simple ones. For the former, adequate experimental protocols need to be employed that take into account the time evolution of these materials: ageing and shear rejuvenation. This solves the problem of experimental determination of the yield stress. Also, we show that true yield stress materials indeed exist, and in addition, we account for shear banding that is generically observed in yield stress fluids.

3.
Phys Rev Lett ; 103(18): 188301, 2009 Oct 30.
Article in English | MEDLINE | ID: mdl-19905837

ABSTRACT

We study the rheology of quick clay, an unstable soil responsible for many landslides. We show that above a critical stress the material starts flowing abruptly with a very large viscosity decrease caused by the flow. This leads to avalanche behavior that accounts for the instability of quick clay soils. Reproducing landslides on a small scale in the laboratory shows that an additional factor that determines the violence of the slides is the inhomogeneity of the flow. We propose a simple yield stress model capable of reproducing the laboratory landslide data, allowing us to relate landslides to the measured rheology.

4.
Phys Rev Lett ; 97(14): 144503, 2006 Oct 06.
Article in English | MEDLINE | ID: mdl-17155257

ABSTRACT

Using high-speed video, we have studied air bubbles detaching from an underwater nozzle. As a bubble distorts, it forms a thin neck which develops a singular shape as it pinches off. As in other singularities, the minimum neck radius scales with the time until the breakup. However, because the air-water interfacial tension does not drive the breakup, even small initial cylindrical asymmetries are preserved throughout the collapse. This novel, nonuniversal singularity retains a memory of the nozzle shape, size, and tilt angle. In the last stages, the air appears to tear instead of pinch.

5.
Soft Matter ; 2(4): 274-283, 2006 Mar 16.
Article in English | MEDLINE | ID: mdl-32646124

ABSTRACT

The yield stress of many yield stress fluids has turned out to be difficult to determine experimentally. This has led to various discussions in the literature about those experimental difficulties, and the usefulness and pertinence of the concept of yield stress fluids. We argue here that most of the difficulties disappear when taking the thixotropy of yield stress fluids into account, and will demonstrate an experimental protocol that allows reproducible data to be obtained for the critical stress necessary for flow of these fluids. As a bonus, we will show that the interplay of yield stress and thixotropy allows one to account for the ubiquitous shear localization observed in these materials. However, due to the thixotropy the yield stress is no longer a material property, since it depends on the (shear) history of the sample.

6.
Phys Rev E Stat Nonlin Soft Matter Phys ; 70(2 Pt 2): 026104, 2004 Aug.
Article in English | MEDLINE | ID: mdl-15447542

ABSTRACT

Generic arguments, a minimal numerical model, and fragmentation experiments with gypsum disk are used to investigate the fragment-size distribution that results from dynamic brittle fragmentation. Fragmentation is initiated by random nucleation of cracks due to material inhomogeneities, and its dynamics are pictured as a process of propagating cracks that are unstable against side-branch formation. The initial cracks and side branches both merge mutually to form fragments. The side branches have a finite penetration depth as a result of inherent damping. Generic arguments imply that close to the minimum strain (or impact energy) required for fragmentation, the number of fragments of size s scales as s(-(2D-1)/D) f(1) (- (2/lambda)(D) s)+ f(2) (- s(-1 )(0 ) (lambda+ s(1/D) )(D) ), where D is the Euclidean dimension of the space, lambda is the penetration depth, and f(1) and f(2) can be approximated by exponential functions. Simulation results and experiments can both be described by this theoretical fragment-size distribution. The typical largest fragment size s(0) was found to diverge at the minimum strain required for fragmentation as it is inversely related to the density of initially formed cracks. Our results also indicate that scaling of s(0) close to this divergence depends on, e.g., loading conditions, and thus is not universal. At the same time, the density of fragment surface vanishes as L-1, L being the linear dimension of the brittle solid. The results obtained provide an explanation as to why the fragment-size distributions found in nature can have two components, an exponential as well as a power-law component, with varying relative weights.

SELECTION OF CITATIONS
SEARCH DETAIL