Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Clin Neuropathol ; 42(3): 112-121, 2023.
Article in English | MEDLINE | ID: mdl-36999511

ABSTRACT

We previously reported on the first neuropathological round robin trials operated together with Quality in Pathology (QuIP) GmbH in 2018 and 2019 in Germany, i.e., the trials on IDH mutational testing and MGMT promoter methylation analysis [1]. For 2020 and 2021, the spectrum of round robin trials has been expanded to cover the most commonly used assays in neuropathological institutions. In addition to IDH mutation and MGMT promoter methylation testing, there is a long tradition for 1p/19q codeletion testing relevant in the context of the diagnosis of oligodendroglioma. With the 5th edition of the World Health Organization (WHO) classification of the central nervous system tumors, additional molecular markers came into focus: TERT promoter mutation is often assessed as a molecular diagnostic criterion for IDH-wildtype glioblastoma. Moreover, several molecular diagnostic markers have been introduced for pediatric brain tumors. Here, trials on KIAA1549::BRAF fusions (common in pilocytic astrocytomas) and H3-3A mutations (in diffuse midline gliomas, H3-K27-altered and diffuse hemispheric gliomas, H3-G34-mutant) were most desired by the neuropathological community. In this update, we report on these novel round robin trials. In summary, success rates in all four trials ranged from 75 to 96%, arguing for an overall high quality level in the field of molecular neuropathological diagnostics.


Subject(s)
Biomarkers, Tumor , Chromosome Deletion , Genetic Testing , Histones , Mutation , Oncogene Proteins, Fusion , Promoter Regions, Genetic , Telomerase , Child , Humans , Biomarkers, Tumor/genetics , Brain Neoplasms/diagnosis , Brain Neoplasms/genetics , Germany , Histones/genetics , Membrane Proteins/genetics , Oligodendroglioma/diagnosis , Oligodendroglioma/genetics , Oncogene Proteins, Fusion/genetics , Promoter Regions, Genetic/genetics , Proto-Oncogene Proteins B-raf/genetics , Telomerase/genetics
2.
Front Cell Infect Microbiol ; 10: 577428, 2020.
Article in English | MEDLINE | ID: mdl-33117732

ABSTRACT

Tethering of viral genomes to host chromosomes has been recognized in a variety of DNA and RNA viruses. It can occur during both the productive cycle and latent infection and may impact viral genomes in manifold ways including their protection, localization, transcription, replication, integration, and segregation. Tethering is typically accomplished by dedicated viral proteins that simultaneously associate with both the viral genome and cellular chromatin via nucleic acid, histone and/or non-histone protein interactions. Some of the most prominent tethering proteins have been identified in DNA viruses establishing sustained latent infections, including members of the papillomaviruses and herpesviruses. Herpesvirus particles have linear genomes that circularize in infected cell nuclei and usually persist as extrachromosomal episomes. In several γ-herpesviruses, tethering facilitates the nuclear retention and faithful segregation of viral episomes during cell division, thus contributing to persistence of these viruses in the absence of infectious particle production. However, it has not been studied whether the genomes of human Cytomegalovirus (hCMV), the prototypical ß-herpesvirus, are tethered to host chromosomes. Here we provide evidence by fluorescence in situ hybridization that hCMV genomes associate with the surface of human mitotic chromosomes following infection of both non-permissive myeloid and permissive fibroblast cells. This chromosome association occurs at lower frequency in the absence of the immediate-early 1 (IE1) proteins, which bind to histones and have been implicated in the maintenance of hCMV episomes. Our findings point to a mechanism of hCMV genome maintenance through mitosis and suggest a supporting but non-essential role of IE1 in this process.


Subject(s)
Cytomegalovirus , Immediate-Early Proteins , Chromosomes , Cytomegalovirus/genetics , Humans , Immediate-Early Proteins/genetics , In Situ Hybridization, Fluorescence , Viral Proteins
3.
Immunobiology ; 221(11): 1259-65, 2016 11.
Article in English | MEDLINE | ID: mdl-27377709

ABSTRACT

Our previous results indicate that HBD2 and HBD3 are chemotactic for a broad spectrum of leukocytes in a CCR6- and CCR2-dependent manner. In this study we report that pre-stimulation of primary human macrophages or THP-1 cells with HBD2 or HBD3 results in a synergistic, enhanced expression of pro-inflammatory cytokines and chemokines induced by TLR ligand re-stimulation. Experiments using specific inhibitors of the ATP-gated channel receptor P2X7 or its functional ligand ATP, suggest that the enhanced expression of pro-inflammatory cytokines and chemokines seems to be mediated by P2X7R. Furthermore, our data provide evidence that beta-defensins do not directly interact with P2X7R but rather induce the release of intracellular ATP. Interference with ATP release abrogated the synergistic effect mediated by HBD2 and HBD3 pre-stimulation in THP-1 cells. However, extracellular ATP alone seems not to be sufficient to elicit the enhanced synergistic effect on cytokine and chemokine expression observed by pre-stimulation of primary human macrophages or THP-1 cells with HBD2 or HBD3. Collectively, our findings provide new insights into the molecular mechanisms how HBD2 and HBD3 interact with cells of myeloid origin and demonstrate their immuno-modulating functions during innate immune responses.


Subject(s)
Adenosine Triphosphate/metabolism , Cytokines/metabolism , Inflammation Mediators/metabolism , Receptors, Purinergic P2X7/metabolism , Toll-Like Receptors/metabolism , beta-Defensins/metabolism , Biomarkers , Cell Line , Cytokines/genetics , Gene Expression , Humans , Immunity, Innate , Immunomodulation , Ligands , Macrophage Activation/immunology , Macrophages/immunology , Macrophages/metabolism , Monocytes/immunology , Monocytes/metabolism , Toll-Like Receptors/agonists
4.
J Virol ; 88(2): 1228-48, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24227840

ABSTRACT

The 72-kDa immediate early 1 (IE1) protein encoded by human cytomegalovirus (hCMV) is a nuclearly localized promiscuous regulator of viral and cellular transcription. IE1 has long been known to associate with host mitotic chromatin, yet the mechanisms underlying this interaction have not been specified. In this study, we identify the cellular chromosome receptor for IE1. We demonstrate that the viral protein targets human nucleosomes by directly binding to core histones in a nucleic acid-independent manner. IE1 exhibits two separable histone-interacting regions with differential binding specificities for H2A-H2B and H3-H4. The H2A-H2B binding region was mapped to an evolutionarily conserved 10-amino-acid motif within the chromatin-tethering domain (CTD) of IE1. Results from experimental approaches combined with molecular modeling indicate that the IE1 CTD adopts a ß-hairpin structure, docking with the acidic pocket formed by H2A-H2B on the nucleosome surface. IE1 binds to the acidic pocket in a way similar to that of the latency-associated nuclear antigen (LANA) of the Kaposi's sarcoma-associated herpesvirus. Consequently, the IE1 and LANA CTDs compete for binding to nucleosome cores and chromatin. Our work elucidates in detail how a key viral regulator is anchored to human chromosomes and identifies the nucleosomal acidic pocket as a joint target of proteins from distantly related viruses. Based on the striking similarities between the IE1 and LANA CTDs and the fact that nucleosome targeting by IE1 is dispensable for productive replication even in "clinical" strains of hCMV, we speculate that the two viral proteins may serve analogous functions during latency of their respective viruses.


Subject(s)
Chromosomes, Human/virology , Cytomegalovirus Infections/virology , Cytomegalovirus/metabolism , Immediate-Early Proteins/metabolism , Nucleosomes/metabolism , Amino Acid Sequence , Binding Sites , Chromosomes, Human/genetics , Chromosomes, Human/metabolism , Cytomegalovirus/genetics , Cytomegalovirus Infections/genetics , Cytomegalovirus Infections/metabolism , Histones/genetics , Histones/metabolism , Humans , Immediate-Early Proteins/chemistry , Immediate-Early Proteins/genetics , Models, Molecular , Molecular Sequence Data , Nucleosomes/chemistry , Nucleosomes/virology , Protein Binding , Protein Structure, Tertiary
5.
Proc Natl Acad Sci U S A ; 110(32): 13126-31, 2013 Aug 06.
Article in English | MEDLINE | ID: mdl-23878222

ABSTRACT

Human CMV (hCMV) establishes lifelong infections in most of us, causing developmental defects in human embryos and life-threatening disease in immunocompromised individuals. During productive infection, the viral >230,000-bp dsDNA genome is expressed widely and in a temporal cascade. The hCMV genome does not carry histones when encapsidated but has been proposed to form nucleosomes after release into the host cell nucleus. Here, we present hCMV genome-wide nucleosome occupancy and nascent transcript maps during infection of permissive human primary cells. We show that nucleosomes occupy nuclear viral DNA in a nonrandom and highly predictable fashion. At early times of infection, nucleosomes associate with the hCMV genome largely according to their intrinsic DNA sequence preferences, indicating that initial nucleosome formation is genetically encoded in the virus. However, as infection proceeds to the late phase, nucleosomes redistribute extensively to establish patterns mostly determined by nongenetic factors. We propose that these factors include key regulators of viral gene expression encoded at the hCMV major immediate-early (IE) locus. Indeed, mutant virus genomes deficient for IE1 expression exhibit globally increased nucleosome loads and reduced nucleosome dynamics compared with WT genomes. The temporal nucleosome occupancy differences between IE1-deficient and WT viruses correlate inversely with changes in the pattern of viral nascent and total transcript accumulation. These results provide a framework of spatial and temporal nucleosome organization across the genome of a major human pathogen and suggest that an hCMV major IE protein governs overall viral chromatin structure and function.


Subject(s)
Chromatin/genetics , Cytomegalovirus/genetics , Genome, Viral/genetics , Immediate-Early Proteins/genetics , Nucleosomes/genetics , Cell Line , Cell Nucleus/genetics , Cell Nucleus/metabolism , Cell Nucleus/virology , Chromatin/metabolism , Cytomegalovirus/metabolism , Cytomegalovirus/physiology , DNA, Viral/genetics , DNA, Viral/metabolism , Fibroblasts/cytology , Fibroblasts/metabolism , Fibroblasts/virology , Host-Pathogen Interactions , Humans , Immediate-Early Proteins/metabolism , Immunoblotting , Mutation , Nucleosomes/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Transcription, Genetic
6.
J Virol ; 86(18): 9817-27, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22761369

ABSTRACT

In the nuclei of permissive cells, human cytomegalovirus genomes form nucleosomal structures initially resembling heterochromatin but gradually switching to a euchromatin-like state. This switch is characterized by a decrease in histone H3 K9 methylation and a marked increase in H3 tail acetylation and H3 K4 methylation across the viral genome. We used ganciclovir and a mutant virus encoding a reversibly destabilized DNA polymerase to examine the impact of DNA replication on histone modification dynamics at the viral chromatin. The changes in H3 tail acetylation and H3 K9 methylation proceeded in a DNA replication-independent fashion. In contrast, the increase in H3 K4 methylation proved to depend widely on viral DNA synthesis. Consistently, labeling of nascent DNA using "click chemistry" revealed preferential incorporation of methylated H3 K4 into viral (but not cellular) chromatin during or following DNA replication. This study demonstrates largely selective epigenetic tagging of postreplicative human cytomegalovirus chromatin.


Subject(s)
Chromatin/genetics , Chromatin/metabolism , Cytomegalovirus/genetics , Cytomegalovirus/physiology , Histones/metabolism , Base Sequence , Cell Line , Chromatin/chemistry , Cytomegalovirus/pathogenicity , DNA Replication , DNA, Viral/biosynthesis , DNA, Viral/genetics , Epigenesis, Genetic , Euchromatin/chemistry , Euchromatin/genetics , Euchromatin/metabolism , Genome, Viral , Heterochromatin/chemistry , Heterochromatin/genetics , Heterochromatin/metabolism , Histones/chemistry , Humans , Lysine/chemistry , Methylation , Virus Replication/genetics , Virus Replication/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...