Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 94(23): 237402, 2005 Jun 17.
Article in English | MEDLINE | ID: mdl-16090501

ABSTRACT

Inelastic neutron scattering results on the spin-orbital liquid in FeSc2S4 are presented. This sulfospinel reveals strong geometric frustration in the spin and in the orbital sector. In the present experiments the orbital liquid is evidenced by a clear spectroscopic signature of a dynamic Jahn-Teller effect with a vibronic splitting 3Gamma approximately 2 meV in agreement with theoretical estimates. The excitations of the spin liquid reveal strong dispersion and can be characterized as cooperative spin excitations in a supercooled paramagnet with a spin gap of Delta approximately 0.2 meV.

2.
Nat Mater ; 2(4): 247-52, 2003 Apr.
Article in English | MEDLINE | ID: mdl-12690398

ABSTRACT

'Colossal magnetoresistance' in perovskite manganites such as La0.7Ca0.3MnO3 (LCMO), is caused by the interplay of ferro-paramagnetic, metal-insulator and structural phase transitions. Moreover, different electronic phases can coexist on a very fine scale resulting in percolative electron transport. Here we report on (LCMO)1-x:(MgO)x (0 < x < or = 0.8) epitaxial nano-composite films in which the structure and magnetotransport properties of the manganite nanoclusters can be tuned by the tensile stress originating from the MgO second phase. With increasing x, the lattice of LCMO was found to expand, yielding a bulk tensile strain. The largest colossal magnetoresistance of 10(5)% was observed at the percolation threshold in the conductivity at xc 0.3, which is coupled to a structural phase transition from orthorhombic (0 < x < or 0.1) to rhombohedral R3c structure (0.33 < or = x < or = 0.8). An increase of the Curie temperature for the Rc phase was observed. These results may provide a general method for controlling the magnetotransport properties of manganite-based composite films by appropriate choice of the second phase.


Subject(s)
Crystallization/methods , Crystallography/methods , Ferric Compounds/chemistry , Magnesium Oxide/chemistry , Calcium Compounds/chemistry , Electric Conductivity , Electron Transport , Materials Testing , Microscopy, Electron, Scanning , Molecular Conformation , Oxides/chemistry , Sensitivity and Specificity , Temperature , Titanium/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...