Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
Mol Neurobiol ; 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38568418

ABSTRACT

Parkinson's disease (PD) is a neurodegenerative disorder that affects millions of individuals globally. It is characterized by the loss of dopaminergic neurons in Substantia Nigra pars compacta (SNc) and striatum. Neuroimaging techniques such as single-photon emission computed tomography (SPECT), positron emission tomography (PET), and magnetic resonance imaging (MRI) help diagnosing PD. In this study, the focus was on developing technetium-99 m ([99mTc]Tc) radiolabeled drug delivery systems using plant-derived compounds for the diagnosis of PD. Madecassoside (MA), a plant-derived compound, was conjugated with Levodopa (L-DOPA) to form MA-L-DOPA, which was then encapsulated using Poly Lactic-co-Glycolic Acid (PLGA) to create MA-PLGA and MA-L-DOPA-PLGA nanocapsules. Extensive structural analysis was performed using various methods such as Fourier-transform infrared spectroscopy (FTIR), nuclear magnetic resonance spectroscopy (NMR), liquid chromatography-mass spectrometry (LC-MS), thin layer chromatography (TLC), high performance liquid chromatography (HPLC), dynamic light scattering (DLS), and scanning electron microscopy (SEM) to characterize the synthesized products. Radiochemical yields of radiolabeled compounds were determined using thin layer radio chromatography (TLRC) and high performance liquid radio chromatography (HPLRC) methods. In vitro cell culture studies were conducted on human neuroblastoma (SH-SY5Y) and rat pheochromocytoma (PC-12) cell lines to assess the incorporation of [99mTc]Tc radiolabeled compounds ([99mTc]Tc-MA, [99mTc]Tc-MA-L-DOPA, [99mTc]Tc-MA-PLGA and [99mTc]Tc-MA-L-DOPA-PLGA) and the cytotoxicity of inactive compounds (MA and MA-L-DOPA compounds and encapsulated compounds (MA-PLGA and MA-L-DOPA-PLGA). Additionally, the biodistribution studies were carried out on healthy male Sprague-Dawley rats and a Parkinson's disease experimental model to evaluate the compounds' bioactivity using the radiolabeled compounds. The radiochemical yields of all radiolabeled compounds except [99mTc]Tc-L-DOPA-PLGA were above 95% and had stability over 6 h. The cytotoxic effects of all substances on SH-SY5Y and PC-12 cells increase with increasing concentration values. The uptake values of PLGA-encapsulated compounds are statistically significant in SH-SY5Y and PC-12 cells. The biodistribution studies showed that [99mTc]Tc-MA is predominantly retained in specific organs and brain regions, with notable uptake in the prostate, muscle, and midbrain. PLGA-encapsulation led to higher uptake in certain organs, suggesting its biodegradable nature may enhance tissue retention, and surface modifications might further optimize brain penetration. Overall, the results indicate that radiolabeled plant-derived encapsulated drug delivery systems with [99mTc]Tc hold potential as diagnostic agents for PD symptoms. This study contributes to the advancement of drug delivery agents in the field of brain research.

2.
Res Sq ; 2023 Oct 30.
Article in English | MEDLINE | ID: mdl-37961521

ABSTRACT

Background: Prostate cancer (PC) is the most common type of cancer in elderly men, with a positive correlation with age. As resistance to treatment has developed, particularly in the progressive stage of the disease and in the presence of microfocal multiple bone metastases, new generation radionuclide therapies have emerged. Recently, [161Tb], a radiolanthanide introduced for treating micrometastatic foci, has shown great promise for treating prostate cancer. Results: In this study, Terbium-161 [161Tb]Tb was radiolabeled with prostate-specific membrane antigen (PSMA)-617 ([161Tb]-PSMA-617) and the therapeutic efficacy of the radiolabeled compound investigated in vitro and in vivo. [161Tb]-PSMA-617 was found to have a radiochemical yield of 97.99 ± 2.01% and was hydrophilic. [161Tb]-PSMA-617 was also shown to have good stability, with a radiochemical yield of over 95% up to 72 hours. In vitro, [161Tb]-PSMA-617 showed a cytotoxic effect on LNCaP cells but not on PC-3 cells. In vivo, scintigraphy imaging visualized the accumulation of [161Tb]-PSMA-617 in the prostate, kidneys, and bladder. Conclusions: The results suggest that [161Tb]-PSMA-617 can be an effective radiolabeled agent for the treatment of PSMA positive foci in prostate cancer.

3.
J Wound Care ; 32(6): 392-398, 2023 Jun 02.
Article in English | MEDLINE | ID: mdl-37300855

ABSTRACT

OBJECTIVE: Kigelia africana (Lam.) Benth. (Bignoniaceae) syn. Kigelia pinnata (Jacq. DC) is a tropical plant that is native to tropical Africa. The aim of this study was to determine if a methanolic extract prepared from Kigelia africana (KAE) can promote wound healing in treated human normal epidermal keratinocyte (HaCaT) cells and human normal foreskin fibroblast cell line (BJ) cells compared with untreated cells. METHOD: Experimental steps included: the methanolic extraction of the leaf and fruit of the Kigelia africana plant; the preparation of HaCaT and BJ cell lines; cell culture with a stable tetrazolium salt-based proliferation assay; and the evaluation of the wound healing effect of KAE (2µg/ml) in BJ and HaCaT cells. The phytochemical contents of KAE were determined using liquid chromatography quadrupole time-of-flight mass spectrometry. RESULTS: The following molecules were identified as being present in the KAE, among others: cholesterol sulfate; lignoceric acid; embelin; isostearic acid; linoleic acid; dioctyl phthalate; arg-pro-thr; 15-methyl-15(S)-PGE1; sucrose; benzododecinium (Ajatin); and 9-Octadecenamide (oleamide). KAE effected faster wound healing in treated cells compared with untreated cells for both cell lines. HaCaT cells that had been mechanically injured and treated with KAE healed completely in 48 hours compared with 72 hours for untreated HaCaT cells. Treated BJ cells healed completely in 72 hours compared with 96 hours for untreated BJ cells. Concentrations of KAE up to 300µg/ml had a very low cytotoxic effect on treated BJ and HaCaT cells. CONCLUSION: The experimental data in this study support the potential of KAE-based wound healing treatment to accelerate wound healing.


Subject(s)
Bignoniaceae , Methanol , Humans , Methanol/pharmacology , Plant Extracts/pharmacology , Cell Line , Bignoniaceae/chemistry , Wound Healing
4.
Int J Mol Sci ; 24(6)2023 Mar 09.
Article in English | MEDLINE | ID: mdl-36982357

ABSTRACT

This study was performed to synthesize a radiopharmaceutical designed for multimodal hepatocellular carcinoma (HCC) treatment involving radionuclide therapy and magnetic hyperthermia. To achieve this goal, the superparamagnetic iron oxide (magnetite) nanoparticles (SPIONs) were covered with a layer of radioactive gold (198Au) creating core-shell nanoparticles (SPION@Au). The synthesized SPION@Au nanoparticles exhibited superparamagnetic properties with a saturation magnetization of 50 emu/g, which is lower than reported for uncoated SPIONs (83 emu/g). Nevertheless, the SPION@Au core-shell nanoparticles showed a sufficiently high saturation magnetization value which allows them to reach a temperature of 43 °C at a magnetic field frequency of 386 kHz. The cytotoxic effect of nonradioactive and radioactive SPION@Au-polyethylene glycol (PEG) bioconjugates was carried out by treating HepG2 cells with various concentrations (1.25-100.00 µg/mL) of the compound and radioactivity in range of 1.25-20 MBq/mL. The moderate cytotoxic effect of nonradioactive SPION@Au-PEG bioconjugates on HepG2 was observed. The cytotoxic effect associated with the ß- radiation emitted by 198Au was much greater and already reaches a cell survival fraction below 8% for 2.5 MBq/mL of radioactivity after 72 h. Thus, the killing of HepG2 cells in HCC therapy should be possible due to the combination of the heat-generating properties of the SPION-198Au-PEG conjugates and the radiotoxicity of the radiation emitted by 198Au.


Subject(s)
Carcinoma, Hepatocellular , Hyperthermia, Induced , Liver Neoplasms , Magnetite Nanoparticles , Humans , Carcinoma, Hepatocellular/radiotherapy , Gold , Liver Neoplasms/therapy , Magnetite Nanoparticles/therapeutic use , Magnetic Iron Oxide Nanoparticles , Hyperthermia , Magnetic Phenomena
5.
Curr Radiopharm ; 16(2): 140-150, 2023.
Article in English | MEDLINE | ID: mdl-36627786

ABSTRACT

BACKGROUND: In recent years, there has been a significant increase in studies investigating the potential use of plant-origin products in the treatment and diagnosis of different types of cancer. METHODS: In this study, Estragole (EST) was isolated from basil leaves via ethanolic extraction using an 80% ethanol concentration. The isolation process was performed using the High Performance Liquid Chromatography (HPLC) method. The EST isolated from the basil plant was radiolabeled with 131I using the iodogen method. Quality control studies of the radiolabeled EST (131IEST) were carried out by using Thin Layer Radio Chromatography (TLRC). Next, in vitro cell, culture studies were done to investigate the bio-affinity of plant-originated EST labeled with 131I on human medulloblastoma (DAOY) and human glioblastoma-astrocytoma (U-87 MG) cell lines. Finally, the cytotoxicity of EST was determined, and cell uptake of 131I-EST was investigated on cancer cell lines by incorporation studies. RESULTS: As a result of these studies, it has been shown that 131I-EST has a significant uptake on the brain cells. CONCLUSION: This result is very satisfying, and it has encouraged us to do in vivo studies for the molecule in the future.


Subject(s)
Brain Neoplasms , Ocimum basilicum , Humans , Ocimum basilicum/chemistry , Radiopharmaceuticals
6.
Curr Radiopharm ; 14(1): 46-50, 2021.
Article in English | MEDLINE | ID: mdl-32228432

ABSTRACT

BACKGROUND: Tumors are defined as abnormal tissue masses, and one of the most important factors leading to the growth of these abnormal tissue masses is Vascular Endothelial Growth Factor, which stimulates angiogenesis by releasing cells under hypoxic conditions. Hypoxia has a vital role in cancer therapy, thus it is important to monitor hypoxia. The hypoxia marker Pimonidazole (PIM) is a candidate biomarker of cancer aggressiveness. OBJECTIVE: The study aimed to perform radioiodination of PIM with Iodine-131 (131I) to join a theranostic approach. For this purpose, PIM was derived as PIM-TOS to be able to be radioiodinated. METHODS: PIM was derived via a tosylation reaction. Derivatization product (PIM-TOS) was radioiodinated by using iodogen method and was analyzed by High-Performance Liquid Chromatography and Liquid chromatography-mass spectrometry. Thin layer radiochromatography was utilized for its quality control studies. RESULTS: PIM was derived successfully after the tosylation reaction. The radioiodination yield of PIM-TOS was over 85%. CONCLUSION: In the current study, radioiodination potential of PIM with 131I, as a potential theranostic hypoxia agent was investigated. Further experimental studies should be performed for developing a novel hypoxia probe including theranostics approaches.


Subject(s)
Cell Hypoxia/radiation effects , Iodine Radioisotopes/administration & dosage , Nitroimidazoles/radiation effects , Precision Medicine/methods , Radiation-Sensitizing Agents/radiation effects , Radiopharmaceuticals/administration & dosage , Humans
7.
Cancer Biother Radiopharm ; 32(3): 75-81, 2017 Apr.
Article in English | MEDLINE | ID: mdl-28358602

ABSTRACT

Recently, the synthesis of radiolabeled plant origin compounds has been increased due to their high uptake on some cancer cell lines. Eugenol (EUG), a phenolic natural compound in the essential oils of different spices such as Syzygium aromaticum (clove), Pimenta racemosa (bay leaves), and Cinnamomum verum (cinnamon leaf), has been exploited for various medicinal applications. EUG has antiviral, antioxidant, and anti-inflammatory functions and several anticancer properties. The objective of this article is to synthesize radioiodinated (131I) EUG and investigate its effect on Caco2, MCF7, and PC3 adenocarcinoma cell lines. It is observed that radioiodinated EUG would have potential on therapy and imaging due to its notable uptakes in studied cells.


Subject(s)
Adenocarcinoma/drug therapy , Adenocarcinoma/radiotherapy , Eugenol/chemical synthesis , Iodine Radioisotopes/chemistry , Radiopharmaceuticals/chemical synthesis , Caco-2 Cells , Cell Line, Tumor , Chromatography, High Pressure Liquid , Chromatography, Thin Layer , Eugenol/administration & dosage , Eugenol/chemistry , Eugenol/isolation & purification , Humans , Iodine Radioisotopes/administration & dosage , Isotope Labeling , MCF-7 Cells , Radiopharmaceuticals/chemistry
8.
Cancer Biother Radiopharm ; 28(4): 310-9, 2013 May.
Article in English | MEDLINE | ID: mdl-23350895

ABSTRACT

The aim of this study is to determine the incorporations of radiolabeled bleomycin ((131)I-BLM) and bleomycin-glucuronide ((131)I-BLMGLU) on PC-3 (human prostate carcinoma cell line), Caco-2 (human colon adenocarcinoma cell line), Hutu-80 (Human Duodenum adenocarcinoma cell line), and A549 (Human lung adenocarcinoma epithelial cell line) cancerous cell lines. For this purpose, BLM and BLMGLU enyzmatically synthesized were labeled with (131)I, quality control studies were done and the incorporation yields of (131)I-BLM and (131)I-BLMGLU on these cell lines were measured. Quality-control studies showed that the radiolabeling yields were obtained as 95% and 90% for (131)I-BLM and (131)I-BLMGLU, respectively. Also, as a result of the cell culture studies, it was found that (131)I-BLM and (131)I-BLMGLU had higher incorporation on PC-3 cells than that of other cell lines. In addition to this, it was reported that the incorporation yield of (131)I-BLMGLU was higher than that (131)I-BLM. At the end of the study, cytotoxicities of BLM and BLMGLU on PC-3 cancerous cell line were inspected and fluorescent images of BLM and BLMGLU were taken on PC-3 cells by using fluorescein isothiocyanate. In conclusion, cell culture studies demonstrated that the incorporation values of (131)I-BLMGLU on the four cell lines were about five to six times higher than (131)I-BLM. Radiolabeled glucuronide derivatives can be used in cancer therapy and tumor imaging, depending on the properties of radioiodine for the ß-glucuronidase-rich tissues because glucuronidation leads to rapid and higher incorporation on adenocarcinoma cells.


Subject(s)
Adenocarcinoma/drug therapy , Antineoplastic Agents/pharmacology , Bleomycin/pharmacology , Duodenal Neoplasms/metabolism , Glucuronides/pharmacology , Lung Neoplasms/metabolism , Prostatic Neoplasms/drug therapy , Adenocarcinoma/metabolism , Antineoplastic Agents/pharmacokinetics , Apoptosis/drug effects , Bleomycin/chemistry , Bleomycin/pharmacokinetics , Caco-2 Cells , Cell Proliferation/drug effects , Glucuronides/chemistry , Glucuronides/pharmacokinetics , Humans , Iodine Radioisotopes , Male , Optical Imaging , Prostatic Neoplasms/metabolism
9.
Acta cir. bras ; 27(9): 606-610, Sept. 2012. ilus, tab
Article in English | LILACS | ID: lil-646725

ABSTRACT

PURPOSE: Since Technetium-99m (99mTc) has favorable physical and chemical characteristics, it is widely used radioisotope in Nuclear Medicine. However, stannous dichloride (SnCl2) has been widely used as a reducing agent in labeling procedure of pharmaceutical with radionuclide, it has been realized that SnCl2 have genotoxic and cytotoxic effects on biological systems. In previous studies, it has been shown that some herbal extract can reduce genotoxic and cytotoxic effects of SnCl2. In the present study, it is aimed to evaluate the effect of the broccoli extract on the survival of E. coli ATCC 25922 strain against to toxic effects of SnCl2. METHODS: Broccoli was extracted with methanol extraction. HPLC and TLC analysis of broccoli extract were performed. Then antitoxicity and dose response assays were performed on bacterial strain. RESULTS: The broccoli extract had dose dependent protective effect against SnCl2 toxic effect on E. coli. CONCLUSIONS: The consumption of broccoli may alter the stannous dichloride toxicity. Broccoli extract may use as a new protective strategies against the toxic effect of SnCl2 on patients who were taken 99mTc radiopharmaceuticals.


OBJETIVO: Em face de suas características físico-químicas, o Tecnécio-99m (99mTc) é um radiofármaco amplamente utilizado na Medicina Nuclear. Todavia, o dicloreto de estanho (SnCl2) tem sido largamente aplicado como um agente redutor no procedimento farmacêutico de marcação com radionuclídeos. Constatou-se que o SnCl2 apresenta efeitos genotóxicos e citotóxicos nos sistemas biológicos. Em estudos prévios, foi demonstrado que alguns extratos de ervas podem reduzir tais efeitos. O estudo atual objetivou avaliar os efeitos do extrato de brócolis na sobrevida da cepa E. coli ATCC 25922, exposta ao efeito tóxico do SnCl2. MÉTODOS: O extrato de brócolis foi obtido mediante extração com metanol. Analises com HPLC e TLC foram efetuadas. Avaliou-se a antitoxicidade e realizou-se um ensaio dose-resposta para uma cepa de bactérias. RESULTADOS: O extrato de brócolis mostrou um efeito protetor dose dependente para os efeitos tóxicos do SnCl2 sobre a E. coli. CONCLUSÕES: O consumo de brócolis pode alterar a toxicidade do dicloreto de estanho. O extrato de brócolis pode ser utilizado como uma nova estratégia para proteção de pacientes contra os efeitos tóxicos do SnCl2, nos quais foi administrado o radiofármaco Tecnécio-99m.


Subject(s)
Brassica/chemistry , Escherichia coli/drug effects , Plant Extracts/pharmacology , Radiopharmaceuticals/toxicity , Technetium/toxicity , Tin Compounds/toxicity , Chromatography, Thin Layer , Radiopharmaceuticals/antagonists & inhibitors , Tin Compounds/antagonists & inhibitors
10.
Acta Cir Bras ; 27(5): 294-300, 2012 May.
Article in English | MEDLINE | ID: mdl-22666741

ABSTRACT

PURPOSE: Current study is focused on extraction with methanol, purification, labeling with (131)I using iodogen method of the yarrow plant and investigating in vivo biological activity using biodistribution and imaging studies on healthy animal models. The aim of the study is to contribute plant extracts to discover new drugs in the diagnosis and treatment of several diseases. METHODS: Nine female and nine male healthy Wistar albino rats, which were approximately 100-150 g in weight, were used for biodistribution studies. For imaging studies four healthy male Balb-C mice were used. Quality control studies were done utilizing thin layer radio chromatography (TLRC) and high performance liquid chromatography (HPLC) methods. For biodistribution studies, (131)I radiolabeled Peak 7 ((131)I-Peak 7) was sterilized and injected into the tail veil of rats and imaging studies were obtained using Kodak FX PRO in vivo Imaging System. RESULTS: The radiolabeling yield of each purified the bioactive extracts of the yarrow plant, seven peaks was between 79 and 92%. The highest radiolabeling yield was calculated for (131)I radiolabeled seventh peak ((131)I-Peak 7) (92.78 ± 5.04, n=5). For this reason the biodistribution and imaging studies were done for (131)I-Peak 7. That's why; these studies with Peak 7 were carried out. CONCLUSION: Peak 7 was radiolabeled with (131)I in high yield for using imaging and therapeutic studies in nuclear medical applications.


Subject(s)
Achillea/chemistry , Iodine Radioisotopes/chemistry , Isotope Labeling/methods , Plant Extracts/isolation & purification , Animals , Chromatography, High Pressure Liquid , Disease Models, Animal , Female , Male , Methanol , Mice , Mice, Inbred BALB C , Plant Extracts/pharmacology , Rats , Rats, Wistar
11.
Cancer Biother Radiopharm ; 27(6): 371-83, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22690908

ABSTRACT

Bleomycin-glucuronide (BLMG) is the glucuronide conjugate of BLM. In the present study, BLMG was primarily enzymatically synthesized by using a microsome preparate separated from rat liver, labeled with (131)I by iodogen method with the aim of generating a radionuclide-labeled prodrug, and investigated its bioaffinities with tumor-bearing Balb/C mice. Quality control procedures were carried out using thin-layer radiochromatography and high-performance liquid chromatography. Tumor growing was carried out by following Caco-2 cell inoculation into mice. Radiolabeling yield was found to be about 65%. Results indicated that (131)I-labeled BLMG ((131)I-BLMG) was highly stable for 24 hours in human serum. Biodistribution studies were carried out with male Albino Wistar rats and colorectal adenocarcinoma tumor-bearing female Balb/C mice. The biodistribution results in rats showed high uptake in the prostate, the large intestine, and the spinal cord. In addition to this, scintigraphic results agreed with those of biodistributional studies. Xenography studies with tumor-bearing mice demonstrated that tumor uptakes of (131)I-BLM and (131)I-BLMG were high in the first 30 minutes postinjection. Tumor-bearing animal studies demonstrated that (131)I-BLMG was specially retained in colorectal adenocarcinoma with high tumor uptake. Therefore, (131)I-BLMG can be proven to be a promising imaging and therapeutic agent, especially for colon cancer in nuclear medical applications.


Subject(s)
Adenocarcinoma/diagnostic imaging , Bleomycin/analogs & derivatives , Colonic Neoplasms/diagnostic imaging , Colonic Neoplasms/metabolism , Glucuronides/chemistry , Iodine Radioisotopes/chemistry , Radiopharmaceuticals/chemical synthesis , Adenocarcinoma/metabolism , Animals , Bleomycin/administration & dosage , Bleomycin/chemistry , Bleomycin/pharmacokinetics , Caco-2 Cells , Cell Line, Tumor , Female , Glucuronides/administration & dosage , Glucuronides/pharmacokinetics , Humans , Isotope Labeling/methods , Male , Mice , Rabbits , Radionuclide Imaging , Radiopharmaceuticals/pharmacokinetics , Rats , Rats, Wistar , Tissue Distribution , Xenograft Model Antitumor Assays
12.
Acta cir. bras ; 27(5): 294-300, May 2012. graf, tab
Article in English | LILACS | ID: lil-626242

ABSTRACT

PURPOSE: Current study is focused on extraction with methanol, purification, labeling with 131I using iodogen method of the yarrow plant and investigating in vivo biological activity using biodistribution and imaging studies on healthy animal models. The aim of the study is to contribute plant extracts to discover new drugs in the diagnosis and treatment of several diseases. METHODS: Nine female and nine male healthy Wistar albino rats, which were approximately 100-150 g in weight, were used for biodistribution studies. For imaging studies four healthy male Balb-C mice were used. Quality control studies were done utilizing thin layer radio chromatography (TLRC) and high performance liquid chromatography (HPLC) methods. For biodistribution studies, 131I radiolabeled Peak 7 (131I-Peak 7) was sterilized and injected into the tail veil of rats and imaging studies were obtained using Kodak FX PRO in vivo Imaging System. RESULTS: The radiolabeling yield of each purified the bioactive extracts of the yarrow plant, seven peaks was between 79 and 92%. The highest radiolabeling yield was calculated for 131I radiolabeled seventh peak (131I-Peak 7) (92.78±5.04, n=5). For this reason the biodistribution and imaging studies were done for 131I-Peak 7. That's why; these studies with Peak 7 were carried out. CONCLUSION: Peak 7 was radiolabeled with 131I in high yield for using imaging and therapeutic studies in nuclear medical applications.


OBJETIVO: O atual estudo tem por objetivo a extração com metanol, purificação, marcação com I131 usando o método direto de marcação da planta Achillea, para investigar in vivo a atividade biológica usando biodistribuição e estudos de imagem em modelos animais saudáveis. O objetivo do estudo é contribuir com extratos de plantas para descobrir novas drogas para o diagnóstico e tratamento de várias doenças. MÉTODOS: Nove fêmeas e nove machos ratos Wistar albino saudáveis, com aproximadamente 100 a 150g de peso foram usados para estudos de biodistribuição. Para estudos de imagem, quatro camundongos Balb-C machos e saudáveis foram usados. Estudos de controle de qualidade foram realizados usando métodos de cromatografia de camada fina e cromatografia líquida de alta performance. Para estudos de biodistribuição, pico 5 radiografado com I131 (I131-Peak 7) foi esterilizado e injetado na veia da cauda dos ratos e estudos de imagem foram obtidos usando Sistema de Imagem Kodak FX PRO in vivo. RESULTADOS: O retorno radiomarcado de cada extrato bioativo purificado da planta Achillea sete picos estavam entre 79 e 92%. O retorno com maior marcação foi calculado para I131 sétimo pico (I131-Peak 7) (92,78±5,04, n=5). Por esta razão os estudos de biodistribuição e de imagem foram feitos para I131-Peak 7. CONCLUSÃO: Peak 7 foi radiomarcado com I131 em alto retorno para uso em estudos terapêuticos e de imagens nas aplicações médicas nucleares.


Subject(s)
Animals , Female , Mice , Rats , Achillea/chemistry , Iodine Radioisotopes/chemistry , Isotope Labeling/methods , Plant Extracts/isolation & purification , Chromatography, High Pressure Liquid , Disease Models, Animal , Methanol , Mice, Inbred BALB C , Plant Extracts/pharmacology , Rats, Wistar
13.
Acta cir. bras ; 26(5): 339-345, Sept.-Oct. 2011. graf, tab
Article in English | LILACS | ID: lil-599634

ABSTRACT

PURPOSE: People consume vegetables without the knowledge of the side effects of the biological and chemical contents and interactions between radiopharmaceuticals and herbal extract. To this end, current study is focused on the effects of broccoli extract on biodistribution of radiolabeled glucoheptonate (99mTc-GH) and radiolabeling of blood components. METHODS: GH was labeled with 99mTc. Quality control studies were done utilizing TLC method. Biodistribution studies were performed on male rats which were treated via gavage with either broccoli extract or SF as control group for 15 days. Blood samples were withdrawn from rats' heart. Radiolabeling of blood constituents performed incubating with GH, SnCl2 and 99m Tc. RESULTS: Radiochemical yield of 99mTc-GH is 98.46±1.48 percent (n=8). Biodistribution studies have shown that according to the control, the treated group with broccoli has approximately 10 times less uptake in kidney. The percentage of the radioactivity ratios of the blood components is found to be same in both groups. CONCLUSIONS: Although there is no considerable effect on the radiolabeling of blood components, there is an outstanding change on the biodistribution studies especially on kidneys. The knowledge of this change on kidney uptake may contribute to reduce the risk of misdiagnosis and/or repetition of the examinations in Nuclear Medicine.


OBJETIVO: As pessoas consomem verduras sem o conhecimento dos efeitos colaterais dos conteúdos biológicos e químicos e interações entre os medicamentos radiofarmacêuticos e os extratos vegetais. Para este fim, o estudo atual é focado sobre os efeitos do extrato de brócolis na biodistribuição do fármaco glucoheptonato (99mTc-GH) e da marcação de componentes do sangue. MÉTODOS: GH foi marcado com 99mTc. Estudos de controle de qualidade foram feitos utilizando o método do TLC. Os estudos de biodistribuição foram realizados em ratos machos que foram tratados por gavagem com um extrato de brócolis ou SF como grupo controle para 15 dias. Amostras de sangue foram retiradas do coração de ratos. Marcação de constituintes sanguíneos realizados incubação com SnCl2 GH e 99mTc. RESULTADOS: Radioquímica rendimento de 99mTc-GH é 98,46 ± 1,48 por cento (n = 8). Os estudos de biodistribuição mostraram que de acordo com o controle, o grupo tratado com brócolis tem aproximadamente 10 vezes menor absorção no rim. O percentual do ratio de radioatividade dos componentes do sangue é encontrado para ser igual nos dois grupos. CONCLUSÕES: Embora não haja nenhum efeito considerável sobre a marcação dos componentes do sangue há uma mudança notável na biodistribuição especialmente nos rins. O conhecimento desta mudança na captação de rim pode contribuir para reduzir o risco de erro diagnóstico e/ou a repetição dos exames de Medicina Nuclear.


Subject(s)
Animals , Male , Rats , Blood Cells/metabolism , Brassica/chemistry , Organotechnetium Compounds/pharmacokinetics , Plant Extracts/pharmacokinetics , Radiopharmaceuticals/pharmacokinetics , Sugar Acids/pharmacokinetics , Organ Specificity , Organotechnetium Compounds/blood , Plant Extracts/blood , Rats, Wistar , Radiopharmaceuticals/blood , Sugar Acids/blood , Time Factors , Tissue Distribution
14.
Acta Cir Bras ; 26(5): 339-45, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21952655

ABSTRACT

PURPOSE: People consume vegetables without the knowledge of the side effects of the biological and chemical contents and interactions between radiopharmaceuticals and herbal extract. To this end, current study is focused on the effects of broccoli extract on biodistribution of radiolabeled glucoheptonate ((99m)Tc-GH) and radiolabeling of blood components. METHODS: GH was labeled with (99m)Tc. Quality control studies were done utilizing TLC method. Biodistribution studies were performed on male rats which were treated via gavage with either broccoli extract or SF as control group for 15 days. Blood samples were withdrawn from rats' heart. Radiolabeling of blood constituents performed incubating with GH, SnCl2 and (99m) Tc. RESULTS: Radiochemical yield of (99m)Tc-GH is 98.46±1.48 % (n=8). Biodistribution studies have shown that according to the control, the treated group with broccoli has approximately 10 times less uptake in kidney. The percentage of the radioactivity ratios of the blood components is found to be same in both groups. CONCLUSIONS: Although there is no considerable effect on the radiolabeling of blood components, there is an outstanding change on the biodistribution studies especially on kidneys. The knowledge of this change on kidney uptake may contribute to reduce the risk of misdiagnosis and/or repetition of the examinations in Nuclear Medicine.


Subject(s)
Blood Cells/metabolism , Brassica/chemistry , Organotechnetium Compounds/pharmacokinetics , Plant Extracts/pharmacokinetics , Radiopharmaceuticals/pharmacokinetics , Sugar Acids/pharmacokinetics , Animals , Male , Organ Specificity , Organotechnetium Compounds/blood , Plant Extracts/blood , Radiopharmaceuticals/blood , Rats , Rats, Wistar , Sugar Acids/blood , Time Factors , Tissue Distribution
15.
Cancer Biother Radiopharm ; 26(5): 573-84, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21950554

ABSTRACT

The metabolic comparison of bleomycin (BLM) and bleomycin-glucuronide (BLMG) radiolabeled with (99m)Tc ((99m)Tc-BLM and (99m)Tc-BLMG, respectively) has been investigated in this study. Quality control procedures were carried out using thin-layer radiochromatography and high-performance liquid chromatography. To compare the metabolic behavior of BLM and its glucuronide conjugate radiolabeled with (99m)Tc, scintigraphic, and biodistributional techniques were applied using male New Zealand rabbits and Albino Wistar rats. The results obtained have shown that these compounds were successfully radiolabeled with a labeling yield of about 100%. Maximum uptakes of (99m)Tc-BLM and (99m)Tc-BLMG metabolized as N-glucuronide were observed within 2 hours in the liver, the bladder, and the spinal cord for (99m)Tc-BLM and the lung, the liver, the kidney, the large intestine, and the spinal cord for (99m)Tc-BLMG, respectively. Scintigraphy and biodistributional studies performed on the experimental animals have shown that radiopharmaceutical potentials of these compounds are completely different. At the same time, uptake of the (99m)Tc-BLMG was found to be better than that of (99m)Tc-BLM.


Subject(s)
Bleomycin/analogs & derivatives , Bleomycin/pharmacokinetics , Glucuronides/pharmacokinetics , Organotechnetium Compounds/pharmacokinetics , Radiopharmaceuticals/metabolism , Animals , Humans , Male , Organotechnetium Compounds/chemistry , Organotechnetium Compounds/metabolism , Rabbits , Rats , Rats, Wistar , Tissue Distribution
16.
Cancer Biother Radiopharm ; 26(5): 623-30, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21950558

ABSTRACT

The current study was aimed at synthesizing a glucuronide derivative of D-penicillamine (D-PA) to be used for imaging purposes. First of all, D-PA-glucuronide (D-PA-Glu) was synthesized by experimental treatments starting with uridine 5'-diphospho-glucuronosyltransferase enzyme rich microsome preparate. Then, the synthesized compound was labeled with technetium ((99m)Tc) by using a reduction method with stannous chloride. Quality controls were performed by using high-performance liquid chromatography and thin-layer radio chromatography (TLRC). Radiolabeling yield of (99m)Tc-D-PA-Glu was more than 98% according to TLRC results. In vitro evaluations of radiolabeled complexes were investigated on PC-3 human prostate cancer cells. (99m)Tc-D-PA-Glu exhibited more accumulation on PC-3 cells versus (99m)Tc-D-PA at 240 minutes. In order to determine its radiopharmaceutical potential, biodistribution studies were carried out in male Albino Wistar rats. The biodistribution results of (99m)Tc-D-PA-Glu, showed the highest uptake in prostate at 120 minutes postinjection with the main excretion route being through kidneys and bladder. (99m)Tc-D-PA-Glu and (99m)Tc-D-PA have exhibited different biodistribution results.


Subject(s)
Glucuronides/chemical synthesis , Organotechnetium Compounds/chemical synthesis , Penicillamine/analogs & derivatives , Technetium/chemistry , Animals , Cell Line, Tumor , Chromatography, High Pressure Liquid , Glucuronides/chemistry , Glucuronides/pharmacokinetics , Humans , Male , Mass Spectrometry , Organotechnetium Compounds/chemistry , Organotechnetium Compounds/pharmacokinetics , Penicillamine/chemical synthesis , Penicillamine/chemistry , Penicillamine/pharmacokinetics , Prostatic Neoplasms/metabolism , Rats , Rats, Wistar , Tissue Distribution
17.
Braz. arch. biol. technol ; 54(1): 73-79, Jan.-Feb. 2011. ilus, graf, tab
Article in English | LILACS | ID: lil-576761

ABSTRACT

In this study, BevMab was conjugated with the bifunctional chelating agent [diethylenetriamine pentaacetic acid (DTPA)] and the product (BevMab-DTPA) was labeled with 99mTc using stannous chloride reducing method. The quality control studies of radiolabeled compound (99mTc-BevMab-DTPA) were done with Thin Layer Radio Chromatography (TLRC) and High Performance Liquid Radio Chromatography (HPLRC) methods ( percent 95 <) to confirm the labeling efficiency. High radiochemical yield [98.07 percent ± 2.17 (n = 13)] was obtained by TLRC method. Biodistribution studies of 99mTc labeled BevMab-DTPA was run on healthy female and male Albino Wistar rats. The distribution figures demonstrated that the radiolabeled compound was eliminated through the kidneys and accumulated in urinary bladder. The values of the BevMab-DTPA uptakes were similar in heart, blood, liver and spleen in both sexes.

SELECTION OF CITATIONS
SEARCH DETAIL
...