Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Plants (Basel) ; 9(9)2020 Aug 21.
Article in English | MEDLINE | ID: mdl-32825574

ABSTRACT

This study was performed to determine the effects of chitosan-coated nano-propolis (NP), which is synthesized via a green sonochemical method, and propolis on the side effects of cisplatin (CP), which is a widely used drug in the treatment of cancer. For this aim, 56 rats were divided into seven groups, balancing their body weights (BW). The study was designed as Control, CP (3 mg/kg BW at single dose of CP as intraperitoneal, ip), Propolis (100 mg/kg BW per day of propolis by gavage), NP-10 (10 mg/kg BW of NP per day by gavage), CP + Propolis (3 mg/kg BW of CP and 100 mg/kg BW of propolis), CP + NP-10 (3 mg/kg CP and 10 mg/kg BW of NP), and CP + NP-30 (3 mg/kg BW of CP and 30 mg/kg BW of NP). Propolis and NP (especially NP-30) were preserved via biochemical parameters, oxidative stress, and activation of apoptotic pathways (anti-apoptotic protein: Bcl-2 and pro-apoptotic protein: Bax) in liver and kidney tissues in the toxicity induced by CP. The NP were more effective than propolis at a dose of 30 mg/kg BW and had the potential to ameliorate CP's negative effects while overcoming serious side effects such as liver and kidney damage.

2.
J Biomol Struct Dyn ; 38(3): 756-770, 2020 02.
Article in English | MEDLINE | ID: mdl-30890106

ABSTRACT

A new anthraquinone [1-(2-Aminoethyl)piperazinyl-9,10-dioxo-anthraquinone] derivative was synthesized and characterized by density functional theory (DFT) calculations, experimental and theoretical vibrational spectroscopy and NMR techniques. The most stable molecular structure of the title molecule was determined by DFT B3LYP method with 6-31++G(d,p) and 6-311++G(d,p) basis sets. The fundamental vibrational wavenumbers, IR and Raman intensities for the optimized structure of the investigated molecule were calculated and compared with the experimental vibrational spectra. The vibrational assignment of the molecule was done using the potential energy distribution analysis. The molecular electrostatic potential (MEP), highest occupied molecular orbital (HOMO) and lowest occupied molecular orbital (LUMO) were also calculated. The antibacterial activities of the new anthraquinone derivative against Gram-positive and Gram-negative bacteria were determined, and it was shown that the highest effectiveness was against Staphylococcus aureus and S. epidermidis while no activity was against Gram-negative bacteria. Moreover, the antimycotic activity of the title compound was examined and the cytotoxicity of anthraquinone derivate was determined. In order to find the possible inhibitory activity of the title compound, molecular docking of the molecule was carried out against DNA. The results indicated that the mentioned compound has a good binding affinity to interact with the DC3, DG4, DA5, DC21 and DC23 residues of DNA via the intermolecular hydrogen bonds. [Formula: see text] Communicated by Ramaswamy H. Sarma.


Subject(s)
Anthraquinones/chemical synthesis , Anthraquinones/pharmacology , Anti-Bacterial Agents/pharmacology , DNA/metabolism , Magnetic Resonance Spectroscopy , Molecular Docking Simulation , A549 Cells , Anthraquinones/chemistry , Anti-Bacterial Agents/chemistry , Bacteria/drug effects , Cell Death/drug effects , Cell Proliferation/drug effects , Fungi/drug effects , Humans , Microbial Sensitivity Tests , Molecular Conformation , Spectroscopy, Fourier Transform Infrared , Spectrum Analysis, Raman , Static Electricity , Vibration
SELECTION OF CITATIONS
SEARCH DETAIL
...