Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Circulation ; 142(2): 133-149, 2020 07 14.
Article in English | MEDLINE | ID: mdl-32524868

ABSTRACT

BACKGROUND: High blood pressure is the primary risk factor for cardiovascular death worldwide. Autosomal dominant hypertension with brachydactyly clinically resembles salt-resistant essential hypertension and causes death by stroke before 50 years of age. We recently implicated the gene encoding phosphodiesterase 3A (PDE3A); however, in vivo modeling of the genetic defect and thus showing an involvement of mutant PDE3A is lacking. METHODS: We used genetic mapping, sequencing, transgenic technology, CRISPR-Cas9 gene editing, immunoblotting, and fluorescence resonance energy transfer. We identified new patients, performed extensive animal phenotyping, and explored new signaling pathways. RESULTS: We describe a novel mutation within a 15 base pair (bp) region of the PDE3A gene and define this segment as a mutational hotspot in hypertension with brachydactyly. The mutations cause an increase in enzyme activity. A CRISPR/Cas9-generated rat model, with a 9-bp deletion within the hotspot analogous to a human deletion, recapitulates hypertension with brachydactyly. In mice, mutant transgenic PDE3A overexpression in smooth muscle cells confirmed that mutant PDE3A causes hypertension. The mutant PDE3A enzymes display consistent changes in their phosphorylation and an increased interaction with the 14-3-3θ adaptor protein. This aberrant signaling is associated with an increase in vascular smooth muscle cell proliferation and changes in vessel morphology and function. CONCLUSIONS: The mutated PDE3A gene drives mechanisms that increase peripheral vascular resistance causing hypertension. We present 2 new animal models that will serve to elucidate the underlying mechanisms further. Our findings could facilitate the search for new antihypertensive treatments.


Subject(s)
Cyclic Nucleotide Phosphodiesterases, Type 3/genetics , Genetic Association Studies , Genetic Predisposition to Disease , Hypertension/genetics , Mutation , Alleles , Amino Acid Substitution , Animals , Animals, Genetically Modified , Arterial Pressure , Biomarkers/blood , Biomarkers/urine , Brachydactyly/diagnosis , Brachydactyly/genetics , CRISPR-Cas Systems , Cyclic Nucleotide Phosphodiesterases, Type 3/metabolism , DNA Mutational Analysis , Disease Models, Animal , Enzyme Activation , Gene Targeting , Genetic Association Studies/methods , Genotype , Immunohistochemistry , Isoenzymes , Male , Pedigree , Phenotype , Radiography , Rats , Renin-Angiotensin System/genetics
2.
Hypertension ; 66(4): 800-8, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26283042

ABSTRACT

Autosomal-dominant hypertension with brachydactyly is a salt-independent Mendelian syndrome caused by activating mutations in the gene encoding phosphodiesterase 3A. These mutations increase the protein kinase A-mediated phosphorylation of phosphodiesterase 3A resulting in enhanced cAMP-hydrolytic affinity and accelerated cell proliferation. The phosphorylated vasodilator-stimulated phosphoprotein is diminished, and parathyroid hormone-related peptide is dysregulated, potentially accounting for all phenotypic features. Untreated patients die prematurely of stroke; however, hypertension-induced target-organ damage is otherwise hardly apparent. We conducted clinical studies of vascular function, cardiac functional imaging, platelet function in affected and nonaffected persons, and cell-based assays. Large-vessel and cardiac functions indeed seem to be preserved. The platelet studies showed normal platelet function. Cell-based studies demonstrated that available phosphodiesterase 3A inhibitors suppress the mutant isoforms. However, increasing cGMP to indirectly inhibit the enzyme seemed to have particular use. Our results shed more light on phosphodiesterase 3A activation and could be relevant to the treatment of severe hypertension in the general population.


Subject(s)
Brachydactyly/genetics , Cyclic Nucleotide Phosphodiesterases, Type 3/genetics , DNA/genetics , Hypertension/congenital , Mutation , Adolescent , Adult , Blood Pressure/physiology , Brachydactyly/diagnosis , Brachydactyly/enzymology , Cyclic Nucleotide Phosphodiesterases, Type 3/metabolism , DNA Mutational Analysis , Echocardiography, Doppler, Pulsed , Female , Humans , Hypertension/diagnosis , Hypertension/enzymology , Hypertension/genetics , Immunoblotting , Magnetic Resonance Imaging, Cine , Male , Middle Aged , Young Adult
3.
Nat Genet ; 47(6): 647-53, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25961942

ABSTRACT

Cardiovascular disease is the most common cause of death worldwide, and hypertension is the major risk factor. Mendelian hypertension elucidates mechanisms of blood pressure regulation. Here we report six missense mutations in PDE3A (encoding phosphodiesterase 3A) in six unrelated families with mendelian hypertension and brachydactyly type E (HTNB). The syndrome features brachydactyly type E (BDE), severe salt-independent but age-dependent hypertension, an increased fibroblast growth rate, neurovascular contact at the rostral-ventrolateral medulla, altered baroreflex blood pressure regulation and death from stroke before age 50 years when untreated. In vitro analyses of mesenchymal stem cell-derived vascular smooth muscle cells (VSMCs) and chondrocytes provided insights into molecular pathogenesis. The mutations increased protein kinase A-mediated PDE3A phosphorylation and resulted in gain of function, with increased cAMP-hydrolytic activity and enhanced cell proliferation. Levels of phosphorylated VASP were diminished, and PTHrP levels were dysregulated. We suggest that the identified PDE3A mutations cause the syndrome. VSMC-expressed PDE3A deserves scrutiny as a therapeutic target for the treatment of hypertension.


Subject(s)
Brachydactyly/genetics , Cyclic Nucleotide Phosphodiesterases, Type 3/genetics , Hypertension/congenital , Adolescent , Adult , Amino Acid Sequence , Animals , Base Sequence , Case-Control Studies , Cell Differentiation , Child , Female , Genetic Association Studies , HeLa Cells , Humans , Hypertension/genetics , Kinetics , Male , Mesenchymal Stem Cells/physiology , Mice , Middle Aged , Molecular Sequence Data , Mutation, Missense , Myocytes, Smooth Muscle/physiology , Pedigree
4.
Hypertension ; 43(2): 471-6, 2004 Feb.
Article in English | MEDLINE | ID: mdl-14707163

ABSTRACT

We are studying a Turkish family with autosomal-dominant hypertension and brachydactyly; affected persons die of stroke before 50 years of age. With interphase fluorescence in situ hybridization, we found a chromosome 12p deletion, reinsertion, and inversion in affected persons. This finding suggested that the hypertension could be caused by one or more of 3 genes, the ATP-dependent potassium channel Kir6.1, its regulator the sulfonyl urea receptor SUR2, and the phosphodiesterase PDE3A. We further studied 6 affected and 4 nonaffected persons. Buttocks biopsies were done, small vessels were tested on a myograph, and mRNA was extracted. We performed forearm blood flow studies with intrabrachial artery diazoxide, isoproterenol, and milrinone infusions. Systemic pharmacological testing was done with intravenous diazoxide, nitroprusside, and isoproterenol. PDE3A mRNA was high in vessels from 3 affected subjects, but not high in 3 others. The vessels responded similarly to forskolin, with or without glibenclamide, and to cromakalim. However, there was a suggestion that the dilatation after milrinone might be exaggerated. The forearm infusion studies showed no differences in the responses to diazoxide, isoproterenol, or milrinone. Systemically, affected persons showed a greater blood pressure response to diazoxide and nitroprusside, and a greater heart rate response to isoproterenol than nonaffected persons. The results shed doubt on Kir6.1 and SUR2. The differences in PDE3A expression and responses may be the result of hypertension rather than the cause. Although our 3 candidate genes are no longer likely, the rearrangement we describe greatly enhances the perspectives of this project.


Subject(s)
Chromosome Aberrations , Chromosomes, Human, Pair 12 , Fingers/abnormalities , Hypertension/genetics , Toes/abnormalities , Arteries/metabolism , Culture Techniques , Forearm/blood supply , Humans , Hypertension/complications , Hypertension/metabolism , In Situ Hybridization, Fluorescence , Interphase , RNA, Messenger/metabolism , Regional Blood Flow/drug effects , Vasoconstriction , Vasodilator Agents/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...