Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Front Psychol ; 9: 109, 2018.
Article in English | MEDLINE | ID: mdl-29467709

ABSTRACT

Individuals with intellectual disabilities (ID) (50 < IQ < 79) show impaired motor and postural control, these impairments are highly related to falls and injuries. Recent studies demonstrated these impairments are related with fine and gross motor development, which are more strongly associated with cognition, and consequently language for individuals with ID than for without ID. Despite these studies, little is known about the structure and functioning of this population's spinal cord, which is highly involved in postural control. The aim of our study was to assess the latency of the reflex responses in postural muscles after unexpected lateral external perturbations, in individuals with intellectual disabilities compared to typically developed participants. We assessed 16 participants with intellectual disabilities, 9 males and 7 females (aged 24.06 ± 8.66 years) and 20 typical developed participants (CG), 11 females, 9 males, (aged 21.20±1.96 years). While the participants were in an upright standing position electromyography was used to collect data from M. obliquus externus abdominis (OE) muscles, which were activated by unpredictable perturbations applied by a servomotor on a hand-held grip, following the lateral external perturbation to the trunk. The intellectual disabilities group presented contralateral OE muscles latency of 85.71±27.24 ms, and CG group presented 68.62±10.25 ms, no differences was found. Ipsilateral OE muscles latency also did not differs between the groups, ID group showed 96.60±30.20 ms and CG group showed 95.57±33.53 ms. Our study furthers the knowledge about the muscular activity of individuals with intellectual disabilities. The present experimental results may suggest unique spinal cord processing of individuals with intellectual disabilities when they are faced with unexpected lateral external perturbations.

2.
PLoS One ; 13(12): e0209753, 2018.
Article in English | MEDLINE | ID: mdl-30596721

ABSTRACT

BACKGROUND: Low-velocity motor vehicle crashes often lead to severe and chronic neck disorders also referred to as whiplash-associated disorders (WAD). The etiology of WAD is still not fully understood. Many studies using a real or simulated collision scenario have focused on rear-end collisions, whereas the kinematics and muscular responses during frontal-oblique collisions have hardly been investigated. In particular for rear-end collisions, drivers were shown to have a higher WAD risk than front seat passengers. Yet, independently from the impact direction, neither the muscular nor the kinematic responses of drivers and front seat passengers have been compared to date, although some findings indicate that the neck muscles have the potential to alter the head and neck kinematics, and that the level of neck muscle activity during impact may be relevant for the emergence of WAD. OBJECTIVE: In this study, we quantitatively examined the subjects' neck muscle activity during low-velocity left-frontal-oblique impacts to gain further insights into the neuromuscular mechanism underlying whiplash-like perturbations that may lead to WAD. METHODS: In a within-subject study design, we varied several impact parameters to investigate their effect on neck muscle response amplitude and delay. Fifty-two subjects experienced at least ten collisions while controlling for the following parameters: change in velocity Δv (3 / 6 km/h), seating position (driver / front seat passenger), and deliberate pre-tension of the musculature (tense / relaxed) to account for a potential difference between an expected and an unexpected crash. Ten of the 52 subjects additionally ran the same experimental conditions as above, but without wearing a safety belt. FINDINGS: There were significant main effects of Δv and muscle pre-tension on the reflex amplitude but not of seating position. As for the reflex delay, there was a significant main effect of muscle pre-tension, but neither of Δv nor of seating position. Moreover, neither the safety belt nor its asymmetrical orientation had an influence on the reflexive responses of the occupants. CONCLUSION: In summary, we did not find any significant differences in the reflex amplitude and delay of the neck musculature between drivers and front seat passengers. We therefore concluded that an increased risk of the driver sustaining WAD in frontal-oblique collisions, if it exists, cannot be due to differences in the reflexive responses.


Subject(s)
Accidents, Traffic , Neck Muscles/physiology , Adolescent , Adult , Biomechanical Phenomena , Electromyography , Female , Humans , Logistic Models , Male , Middle Aged , Whiplash Injuries/physiopathology , Young Adult
3.
Front Hum Neurosci ; 11: 296, 2017.
Article in English | MEDLINE | ID: mdl-28638331

ABSTRACT

Postural reflexes are essential for locomotion and postural stability, and may play an important role in the etiology of chronic back pain. It has recently been theoretically predicted, and with the help of unilateral perturbations of the trunk experimentally confirmed that the sensorimotor control must lower the reflex amplitude for increasing reflex delays to maintain spinal stability. The underlying neuromuscular mechanism for the compensation of postural perturbations, however, is not yet fully understood. In this study, we applied unilateral and bilateral sudden external perturbations to the trunk of healthy subjects and measured the muscular activity and the movement onset of the trunk. We found that the onset of the trunk muscle activity is prior to, or coincident with, the onset of the trunk movement. Additionally, the results of our experiments imply that the muscular response mechanism integrates distant sensory information from both sides of the body. These findings rule out a simple monosynaptic stretch reflex in favor of a more complex polysynaptic postural reflex mechanism to compensate postural perturbations. Moreover, the previously predicted negative correlation between reflex delay and reflex gain was also confirmed for bilateral perturbations.

SELECTION OF CITATIONS
SEARCH DETAIL
...