Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Biol ; 20(4)2023 05 26.
Article in English | MEDLINE | ID: mdl-37184431

ABSTRACT

The mechanisms by which a protein's 3D structure can be determined based on its amino acid sequence have long been one of the key mysteries of biophysics. Often simplistic models, such as those derived from geometric constraints, capture bulk real-world 3D protein-protein properties well. One approach is using protein contact maps (PCMs) to better understand proteins' properties. In this study, we explore the emergent behaviour of contact maps for different geometrically constrained models and compare them to real-world protein systems. Specifically, we derive an analytical approximation for the distribution of amino acid distances, denoted asP(s), using a mean-field approach based on a geometric constraint model. This approximation is then validated for amino acid distance distributions generated from a 2D and 3D version of the geometrically constrained random interaction model. For real protein data, we show how the analytical approximation can be used to fit amino acid distance distributions of protein chain lengths ofL ≈ 100,L ≈ 200, andL ≈ 300 generated from two different methods of evaluating a PCM, a simple cutoff based method and a shadow map based method. We present evidence that geometric constraints are sufficient to model the amino acid distance distributions of protein chains in bulk and amino acid sequences only play a secondary role, regardless of the definition of the PCM.


Subject(s)
Protein Folding , Proteins , Protein Conformation , Proteins/chemistry , Amino Acids/chemistry , Amino Acid Sequence
2.
Biomed Opt Express ; 12(6): 3169-3180, 2021 Jun 01.
Article in English | MEDLINE | ID: mdl-34221652

ABSTRACT

High speed volumetric optical microscopy is an important tool for observing rapid processes in living cells or for real-time tracking of sub-cellular components. However, the 3D imaging capability often comes at the price of a high technical complexity of the imaging system and/or the requirement of demanding image analysis. Here, we propose a combination of conventional phase-contrast imaging with a customized multi-plane beam-splitter for enabling simultaneous acquisition of images in eight different focal planes. Our method is technically straightforward and does not require complex post-processing image analysis. We apply our multi-plane phase-contrast microscope to the real-time observation of the fast motion of reactivated Chlamydomonas axonemes with sub-µm spatial and 4 ms temporal resolution. Our system allows us to observe not only bending but also the three-dimensional torsional dynamics of these micro-swimmers.

3.
J Phys Chem B ; 124(17): 3482-3493, 2020 04 30.
Article in English | MEDLINE | ID: mdl-32264681

ABSTRACT

We study intrachain dynamics of intrinsically disordered proteins, as manifested by the time scales of loop formation, using atomistic simulations, experiment-parametrized coarse-grained models, and one-dimensional theories assuming Markov or non-Markov dynamics along the reaction coordinate. Despite the generally non-Markov character of monomer dynamics in polymers, we find that the simplest model of one-dimensional diffusion along the reaction coordinate (equated to the distance between the loop-forming monomers) well captures the mean first passage times to loop closure measured in coarse-grained and atomistic simulations, which, in turn, agree with the experimental values. This justifies use of the one-dimensional diffusion model in interpretation of experimental data. At the same time, the transition path times for loop closure in longer polypeptide chains show significant non-Markov effects; at intermediate times, these effects are better captured by the generalized Langevin equation model. At long times, however, atomistic simulations predict long tails in the distributions of transition path times, which are at odds with both the one-dimensional diffusion model and the generalized Langevin equation model.


Subject(s)
Intrinsically Disordered Proteins , Diffusion , Kinetics , Models, Theoretical , Peptides
4.
PLoS One ; 15(2): e0229230, 2020.
Article in English | MEDLINE | ID: mdl-32106258

ABSTRACT

The intricate three-dimensional geometries of protein tertiary structures underlie protein function and emerge through a folding process from one-dimensional chains of amino acids. The exact spatial sequence and configuration of amino acids, the biochemical environment and the temporal sequence of distinct interactions yield a complex folding process that cannot yet be easily tracked for all proteins. To gain qualitative insights into the fundamental mechanisms behind the folding dynamics and generic features of the folded structure, we propose a simple model of structure formation that takes into account only fundamental geometric constraints and otherwise assumes randomly paired connections. We find that despite its simplicity, the model results in a network ensemble consistent with key overall features of the ensemble of Protein Residue Networks we obtained from more than 1000 biological protein geometries as available through the Protein Data Base. Specifically, the distribution of the number of interaction neighbors a unit (amino acid) has, the scaling of the structure's spatial extent with chain length, the eigenvalue spectrum and the scaling of the smallest relaxation time with chain length are all consistent between model and real proteins. These results indicate that geometric constraints alone may already account for a number of generic features of protein tertiary structures.


Subject(s)
Amino Acids/chemistry , Protein Conformation , Protein Interaction Domains and Motifs , Proteins/chemistry , Algorithms , Amino Acids/metabolism , Humans , Models, Molecular , Protein Folding , Proteins/metabolism
5.
Phys Rev E ; 100(5-1): 052405, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31869980

ABSTRACT

The conformational flexibility and dynamics of unfolded peptide chains is of major interest in the context of protein folding and protein functioning. The rate with which amino acids at different positions along the peptide chain meet sets an upper speed limit for protein folding. By using single-molecule photo-induced energy transfer spectroscopy, we have systematically measured end-to-end and end-to-internal site contact formation rates for several intrinsically disordered protein fragments (IDPs) (11 to 41 amino acids) and have also determined their hydrodynamic radius using dual-focus fluorescence correlation spectroscopy. For interpreting the measured values, we have developed a Brownian dynamics model (based on bead-rod chain dynamics in a thermal bath including hydrodynamic interactions) which quantitatively reproduces all measured data surprisingly well while requiring only two fit parameters. The model provides a complete picture of the peptides' dynamics and allows us to translate the experimental rates and radii into molecular properties of the peptides: We find a persistence length of l_{P}=5.2±1.9Å, a hydrodynamic radius of a=3.5±0.7Å per amino acid, and that excluded volume effects play an important role in the dynamics of IDPs.


Subject(s)
Intrinsically Disordered Proteins/chemistry , Intrinsically Disordered Proteins/metabolism , Models, Molecular , Movement , Diffusion , Hydrodynamics , Kinetics , Protein Conformation
SELECTION OF CITATIONS
SEARCH DETAIL
...