Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
Plant Cell ; 28(8): 1844-59, 2016 08.
Article in English | MEDLINE | ID: mdl-27432873

ABSTRACT

Hydrogen peroxide (H2O2) can act as a signaling molecule that influences various aspects of plant growth and development, including stress signaling and cell death. To analyze molecular mechanisms that regulate the response to increased H2O2 levels in plant cells, we focused on the photorespiration-dependent peroxisomal H2O2 production in Arabidopsis thaliana mutants lacking CATALASE2 (CAT2) activity (cat2-2). By screening for second-site mutations that attenuate the PSII maximum efficiency (Fv'/Fm') decrease and lesion formation linked to the cat2-2 phenotype, we discovered that a mutation in SHORT-ROOT (SHR) rescued the cell death phenotype of cat2-2 plants under photorespiration-promoting conditions. SHR deficiency attenuated H2O2-dependent gene expression, oxidation of the glutathione pool, and ascorbate depletion in a cat2-2 genetic background upon exposure to photorespiratory stress. Decreased glycolate oxidase and catalase activities together with accumulation of glycolate further implied that SHR deficiency impacts the cellular redox homeostasis by limiting peroxisomal H2O2 production. The photorespiratory phenotype of cat2-2 mutants did not depend on the SHR functional interactor SCARECROW and the sugar signaling component ABSCISIC ACID INSENSITIVE4, despite the requirement for exogenous sucrose for cell death attenuation in cat2-2 shr-6 double mutants. Our findings reveal a link between SHR and photorespiratory H2O2 production that has implications for the integration of developmental and stress responses.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Catalase/metabolism , Transcription Factors/deficiency , Transcription Factors/metabolism , Arabidopsis/cytology , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Catalase/genetics , Cell Death/genetics , Cell Death/physiology , Gene Expression Regulation, Plant/genetics , Gene Expression Regulation, Plant/physiology , Hydrogen Peroxide/metabolism , Oxidation-Reduction , Plants, Genetically Modified/cytology , Plants, Genetically Modified/genetics , Plants, Genetically Modified/metabolism , Signal Transduction/genetics , Signal Transduction/physiology , Transcription Factors/genetics
2.
Plant Physiol ; 171(3): 1704-19, 2016 07.
Article in English | MEDLINE | ID: mdl-27225899

ABSTRACT

The genes coding for the core metabolic enzymes of the photorespiratory pathway that allows plants with C3-type photosynthesis to survive in an oxygen-rich atmosphere, have been largely discovered in genetic screens aimed to isolate mutants that are unviable under ambient air. As an exception, glycolate oxidase (GOX) mutants with a photorespiratory phenotype have not been described yet in C3 species. Using Arabidopsis (Arabidopsis thaliana) mutants lacking the peroxisomal CATALASE2 (cat2-2) that display stunted growth and cell death lesions under ambient air, we isolated a second-site loss-of-function mutation in GLYCOLATE OXIDASE1 (GOX1) that attenuated the photorespiratory phenotype of cat2-2 Interestingly, knocking out the nearly identical GOX2 in the cat2-2 background did not affect the photorespiratory phenotype, indicating that GOX1 and GOX2 play distinct metabolic roles. We further investigated their individual functions in single gox1-1 and gox2-1 mutants and revealed that their phenotypes can be modulated by environmental conditions that increase the metabolic flux through the photorespiratory pathway. High light negatively affected the photosynthetic performance and growth of both gox1-1 and gox2-1 mutants, but the negative consequences of severe photorespiration were more pronounced in the absence of GOX1, which was accompanied with lesser ability to process glycolate. Taken together, our results point toward divergent functions of the two photorespiratory GOX isoforms in Arabidopsis and contribute to a better understanding of the photorespiratory pathway.


Subject(s)
Alcohol Oxidoreductases/metabolism , Arabidopsis Proteins/metabolism , Arabidopsis/physiology , Alcohol Oxidoreductases/genetics , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Cell Respiration , Evolution, Molecular , Glycolates/metabolism , Light , Metabolome/genetics , Mutation , Oxidation-Reduction , Phenotype , Photosynthesis
3.
J Exp Bot ; 67(13): 3831-44, 2016 06.
Article in English | MEDLINE | ID: mdl-26976816

ABSTRACT

As plants are sessile organisms that have to attune their physiology and morphology continuously to varying environmental challenges in order to survive and reproduce, they have evolved complex and integrated environment-cell, cell-cell, and cell-organelle signalling circuits that regulate and trigger the required adjustments (such as alteration of gene expression). Although reactive oxygen species (ROS) are essential components of this network, their pathways are not yet completely unravelled. In addition to the intrinsic chemical properties that define the array of interaction partners, mobility, and stability, ROS signalling specificity is obtained via the spatiotemporal control of production and scavenging at different organellar and subcellular locations (e.g. chloroplasts, mitochondria, peroxisomes, and apoplast). Furthermore, these cellular compartments may crosstalk to relay and further fine-tune the ROS message. Hence, plant cells might locally and systemically react upon environmental or developmental challenges by generating spatiotemporally controlled dosages of certain ROS types, each with specific chemical properties and interaction targets, that are influenced by interorganellar communication and by the subcellular location and distribution of the involved organelles, to trigger the suitable acclimation responses in association with other well-established cellular signalling components (e.g. reactive nitrogen species, phytohormones, and calcium ions). Further characterization of this comprehensive ROS signalling matrix may result in the identification of new targets and key regulators of ROS signalling, which might be excellent candidates for engineering or breeding stress-tolerant plants.


Subject(s)
Organelles/physiology , Plant Cells/physiology , Reactive Oxygen Species/metabolism , Signal Transduction , Plant Physiological Phenomena
4.
Theor Appl Genet ; 129(1): 105-15, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26518573

ABSTRACT

KEY MESSAGE: We show the usefulness of integrating effector screening in a breeding program and in resistance gene cloning, with Phytophthora resistance in the Swedish potato breeding clone SW93-1015 as an example. Phytophthora infestans is one of the most devastating plant pathogens worldwide. We have earlier found that the SW93-1015 potato breeding clone has an efficient resistance against P. infestans under field conditions in Sweden, which has an unusually high local diversity of the pathogen. This potato clone has characteristics that are different from classical R-gene-mediated resistance such as elevated levels of hydrogen peroxide (H2O2) under controlled conditions. Analysis of 76 F1 potato progenies from two individual crosses resulted in nearly 50% resistant clones, from both crosses. This result suggests that the SW93-1015 clone has a simplex genotype for this trait. Screening with over 50 different P. infestans effectors, containing the conserved motif RXLR (for Arg, any amino acid, Leu, Arg), revealed a specific response to Avr2, which suggests that SW93-1015 might contain a functional homolog of the R2 resistance gene. We cloned eight R2 gene homologs from SW93-1015, whereof seven have not been described before and one gene encoded a protein identical to Rpi-ABPT. Expression of this gene in potato cultivar Désirée provided R2-specific resistance, whereas other homologues did not. Using RNAseq analyses we designed a new DNA marker for the R2 resistance in SW93-1015. In summary, we have demonstrated the use of effector screening in practical breeding material and revealed the key resistance mechanism for SW93-1015.


Subject(s)
Disease Resistance/genetics , Genes, Plant , Phytophthora infestans , Plant Diseases/genetics , Solanum tuberosum/genetics , Amino Acid Sequence , Breeding , Cloning, Molecular , Genetic Markers , Genotype , Molecular Sequence Data , Plant Diseases/microbiology , Plants, Genetically Modified/genetics , Plants, Genetically Modified/microbiology , Solanum tuberosum/microbiology
5.
Plant Cell Environ ; 38(2): 253-65, 2015 02.
Article in English | MEDLINE | ID: mdl-26317137

ABSTRACT

The high metabolic flux through photorespiration constitutes a significant part of the carbon cycle. Although the major enzymatic steps of the photorespiratory pathway are well characterized, little information is available on the functional significance of photorespiration beyond carbon recycling. Particularly important in this respect is the peroxisomal catalase activity which removes photorespiratory H2O2 generated during the oxidation of glycolate to glyoxylate, thus maintaining the cellular redox homeostasis governing the perception, integration and execution of stress responses. By performing a chemical screen, we identified 34 small molecules that alleviate the negative effects of photorespiration in Arabidopsis thaliana mutants lacking photorespiratory catalase (cat2). The chlorophyll fluorescence parameter photosystem II maximum efficiency (Fv'/Fm') was used as a high-throughput readout. The most potent chemical that could rescue the photorespiratory phenotype of cat2 is a pro-auxin that contains a synthetic auxin-like substructure belonging to the phenoxy herbicide family, which can be released in planta. The naturally occurring indole-3-acetic acid (IAA) and other chemically distinct synthetic auxins also inhibited the photorespiratory-dependent cell death in cat2 mutants, implying a role for auxin signalling in stress tolerance.


Subject(s)
Arabidopsis/cytology , Arabidopsis/metabolism , Hydrogen Peroxide/pharmacology , Indoleacetic Acids/metabolism , Light , Signal Transduction/drug effects , 2,4-Dichlorophenoxyacetic Acid/analogs & derivatives , 2,4-Dichlorophenoxyacetic Acid/chemistry , 2,4-Dichlorophenoxyacetic Acid/metabolism , Amides/metabolism , Amino Acids/metabolism , Arabidopsis/drug effects , Arabidopsis/radiation effects , Catalase/metabolism , Cell Death/drug effects , Cell Death/radiation effects , Cell Respiration/drug effects , Cell Respiration/radiation effects , Mutation/genetics , Small Molecule Libraries/pharmacology
6.
Mol Plant ; 7(7): 1138-50, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24903751

ABSTRACT

Mitochondria are crucial players in the signaling and metabolic homeostasis of the plant cell. The molecular components that orchestrate the underlying processes, however, are largely unknown. Using a chemical biology approach, we exploited the responsiveness of Arabidopsis UDP-glucosyltransferase-encoding UGT74E2 towards mitochondrial perturbation in order to look for novel mechanisms regulating mitochondria-to-nucleus communication. The most potent inducers of UGT74E2 shared a (2-furyl)acrylate (FAA) substructure that negatively affected mitochondrial function and was identified before as an auxin transcriptional inhibitor. Based on these premises, we demonstrated that perturbed mitochondria negatively affect the auxin signaling machinery. Moreover, chemical perturbation of polar auxin transport and auxin biosynthesis was sufficient to induce mitochondrial retrograde markers and their transcript abundance was constitutively elevated in the absence of the auxin transcriptional activators ARF7 and ARF19.


Subject(s)
Indoleacetic Acids/metabolism , Mitochondria/metabolism , Signal Transduction , Acrylates/pharmacology , Arabidopsis/cytology , Arabidopsis/drug effects , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Mitochondria/drug effects , Regulatory Sequences, Nucleic Acid/drug effects , Regulatory Sequences, Nucleic Acid/genetics , Signal Transduction/drug effects
7.
Plant Mol Biol ; 85(3): 233-45, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24549883

ABSTRACT

The establishment of the photosynthetic apparatus during chloroplast development creates a high demand for iron as a redox metal. However, iron in too high quantities becomes toxic to the plant, thus plants have evolved a complex network of iron uptake and regulation mechanisms. Here, we examined whether four of the subgroup Ib basic helix-loop-helix transcription factors (bHLH38, bHLH39, bHLH100, bHLH101), previously implicated in iron homeostasis in roots, also play a role in regulating iron metabolism in developing leaves. These transcription factor genes were strongly up-regulated during the transition from cell proliferation to expansion, and thus sink-source transition, in young developing leaves of Arabidopsis thaliana. The four subgroup Ib bHLH genes also showed reduced expression levels in developing leaves of plants treated with norflurazon, indicating their expression was tightly linked to the onset of photosynthetic activity in young leaves. In addition, we provide evidence for a mechanism whereby the transcriptional regulators SAC51 and TCP20 antagonistically regulate the expression of these four subgroup Ib bHLH genes. A loss-of-function mutant analysis also revealed that single mutants of bHLH38, bHLH39, bHLH100, and bHLH101 developed smaller rosettes than wild-type plants in soil. When grown in agar plates with reduced iron concentration, triple bhlh39 bhlh100 bhlh101 mutant plants were smaller than wild-type plants. However, measurements of the iron content in single and multiple subgroup Ib bHLH genes, as well as transcript profiling of iron response genes during early leaf development, do not support a role for bHLH38, bHLH39, bHLH100, and bHLH101 in iron homeostasis during early leaf development.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Basic Helix-Loop-Helix Transcription Factors/metabolism , Cell Differentiation/physiology , Chloroplasts/physiology , Plant Leaves/cytology , Transcription Factors/metabolism , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Basic Helix-Loop-Helix Transcription Factors/genetics , Cell Differentiation/drug effects , Cell Line , Gene Expression Regulation, Plant , Herbicides/pharmacology , Iron , Photosystem II Protein Complex , Plant Leaves/drug effects , Pyridazines/pharmacology , Nicotiana/cytology , Transcription Factors/genetics , Transcriptome
8.
Mol Plant ; 7(2): 290-310, 2014 Feb.
Article in English | MEDLINE | ID: mdl-23990142

ABSTRACT

Recently, we reported that the novel mitochondrial RNA editing factor SLO2 is essential for mitochondrial electron transport, and vital for plant growth through regulation of carbon and energy metabolism. Here, we show that mutation in SLO2 causes hypersensitivity to ABA and insensitivity to ethylene, suggesting a link with stress responses. Indeed, slo2 mutants are hypersensitive to salt and osmotic stress during the germination stage, while adult plants show increased drought and salt tolerance. Moreover, slo2 mutants are more susceptible to Botrytis cinerea infection. An increased expression of nuclear-encoded stress-responsive genes, as well as mitochondrial-encoded NAD genes of complex I and genes of the alternative respiratory pathway, was observed in slo2 mutants, further enhanced by ABA treatment. In addition, H2O2 accumulation and altered amino acid levels were recorded in slo2 mutants. We conclude that SLO2 is required for plant sensitivity to ABA, ethylene, biotic, and abiotic stress. Although two stress-related RNA editing factors were reported very recently, this study demonstrates a unique role of SLO2, and further supports a link between mitochondrial RNA editing events and stress response.


Subject(s)
Abscisic Acid/metabolism , Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Ethylenes/metabolism , Mitochondria/metabolism , Mitochondrial Proteins/metabolism , Plant Growth Regulators/metabolism , Arabidopsis/genetics , Arabidopsis/growth & development , Arabidopsis/microbiology , Arabidopsis Proteins/genetics , Botrytis/physiology , Electron Transport , Gene Expression Regulation, Plant , Mitochondria/genetics , Mitochondrial Proteins/genetics , Plant Diseases/microbiology , Stress, Physiological
9.
Plant Physiol ; 161(4): 1795-805, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23400705

ABSTRACT

There is growing evidence that for a comprehensive insight into the function of plant genes, it is crucial to assess their functionalities under a wide range of conditions. In this study, we examined the role of lesion simulating disease1 (LSD1), enhanced disease susceptibility1 (EDS1), and phytoalexin deficient4 (PAD4) in the regulation of photosynthesis, water use efficiency, reactive oxygen species/hormonal homeostasis, and seed yield in Arabidopsis (Arabidopsis thaliana) grown in the laboratory and in the field. We demonstrate that the LSD1 null mutant (lsd1), which is known to exhibit a runaway cell death in nonpermissive conditions, proves to be more tolerant to combined drought and high-light stress than the wild type. Moreover, depending on growing conditions, it shows variations in water use efficiency, salicylic acid and hydrogen peroxide concentrations, photosystem II maximum efficiency, and transcription profiles. However, despite these changes, lsd1 demonstrates similar seed yield under all tested conditions. All of these traits depend on EDS1 and PAD4. The differences in the pathways prevailing in the lsd1 in various growing environments are manifested by the significantly smaller number of transcripts deregulated in the field compared with the laboratory, with only 43 commonly regulated genes. Our data indicate that LSD1, EDS1, and PAD4 participate in the regulation of various molecular and physiological processes that influence Arabidopsis fitness. On the basis of these results, we emphasize that the function of such important regulators as LSD1, EDS1, and PAD4 should be studied not only under stable laboratory conditions, but also in the environment abounding in multiple stresses.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Homeostasis , Photosynthesis , Seeds/growth & development , Signal Transduction , Water/metabolism , Adaptation, Physiological/drug effects , Adaptation, Physiological/genetics , Adaptation, Physiological/radiation effects , Arabidopsis/drug effects , Arabidopsis/genetics , Arabidopsis/radiation effects , Carboxylic Ester Hydrolases/metabolism , Cluster Analysis , DNA-Binding Proteins/metabolism , Droughts , Gene Expression Regulation, Plant/drug effects , Gene Expression Regulation, Plant/radiation effects , Homeostasis/drug effects , Homeostasis/radiation effects , Hydrogen Peroxide/metabolism , Light , Photosynthesis/drug effects , Photosynthesis/radiation effects , Photosystem II Protein Complex/metabolism , Plant Growth Regulators/pharmacology , Reactive Oxygen Species/metabolism , Salicylic Acid/metabolism , Seeds/drug effects , Seeds/metabolism , Seeds/radiation effects , Signal Transduction/drug effects , Signal Transduction/radiation effects , Stress, Physiological/drug effects , Stress, Physiological/radiation effects , Transcription Factors/metabolism , Transcriptome/drug effects , Transcriptome/genetics , Transcriptome/radiation effects
10.
Proc Natl Acad Sci U S A ; 109(49): 20113-8, 2012 Dec 04.
Article in English | MEDLINE | ID: mdl-23169634

ABSTRACT

Environmental stresses adversely affect plant growth and development. A common theme within these adverse conditions is the perturbation of reactive oxygen species (ROS) homeostasis. Here, we demonstrate that the ROS-inducible Arabidopsis thaliana WRKY15 transcription factor (AtWRKY15) modulates plant growth and salt/osmotic stress responses. By transcriptome profiling, a divergent stress response was identified in transgenic WRKY15-overexpressing plants that linked a stimulated endoplasmic reticulum-to-nucleus communication to a disrupted mitochondrial stress response under salt-stress conditions. We show that mitochondrial calcium-flux sensing might be important for regulating an active mitochondrial retrograde signaling and launching an appropriate defense response to confer salt-stress tolerance.


Subject(s)
Adaptation, Physiological/physiology , Arabidopsis Proteins/metabolism , Arabidopsis/growth & development , Mitochondria/metabolism , Stress, Physiological/physiology , Transcription Factors/metabolism , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Calcium/metabolism , Flow Cytometry , Gene Expression Profiling , Hydrogen Peroxide/metabolism , Microarray Analysis , Mitochondria/physiology , Mutagenesis, Site-Directed , Osmotic Pressure , Real-Time Polymerase Chain Reaction , Salinity , Transcription Factors/genetics
11.
PLoS One ; 7(5): e37287, 2012.
Article in English | MEDLINE | ID: mdl-22662141

ABSTRACT

Poly-ADP-ribose polymerase (PARP) post-translationally modifies proteins through the addition of ADP-ribose polymers, yet its role in modulating plant development and stress responses is only poorly understood. The experiments presented here address some of the gaps in our understanding of its role in stress tolerance and thereby provide new insights into tolerance mechanisms and growth. Using a combination of chemical and genetic approaches, this study characterized phenotypes associated with PARP inhibition at the physiological level. Molecular analyses including gene expression analysis, measurement of primary metabolites and redox metabolites were used to understand the underlying processes. The analysis revealed that PARP inhibition represses anthocyanin and ascorbate accumulation under stress conditions. The reduction in defense is correlated with enhanced biomass production. Even in unstressed conditions protective genes and molecules are repressed by PARP inhibition. The reduced anthocyanin production was shown to be based on the repression of transcription of key regulatory and biosynthesis genes. PARP is a key factor for understanding growth and stress responses of plants. PARP inhibition allows plants to reduce protection such as anthocyanin, ascorbate or Non-Photochemical-Quenching whilst maintaining high energy levels likely enabling the observed enhancement of biomass production under stress, opening interesting perspectives for increasing crop productivity.


Subject(s)
Anthocyanins/metabolism , Arabidopsis/drug effects , Arabidopsis/metabolism , Enzyme Inhibitors/pharmacology , Poly(ADP-ribose) Polymerase Inhibitors , Stress, Physiological , Arabidopsis/growth & development , Biosynthetic Pathways/physiology , Gene Expression Regulation, Plant/drug effects , Metabolome/drug effects , Oxidation-Reduction/drug effects , Photosynthesis/drug effects , Transcription, Genetic/drug effects
12.
Dev Cell ; 22(1): 64-78, 2012 Jan 17.
Article in English | MEDLINE | ID: mdl-22227310

ABSTRACT

Early leaf growth is sustained by cell proliferation and subsequent cell expansion that initiates at the leaf tip and proceeds in a basipetal direction. Using detailed kinematic and gene expression studies to map these stages during early development of the third leaf of Arabidopsis thaliana, we showed that the cell-cycle arrest front did not progress gradually down the leaf, but rather was established and abolished abruptly. Interestingly, leaf greening and stomatal patterning followed a similar basipetal pattern, but proliferative pavement cell and formative meristemoid divisions were uncoordinated in respect to onset and persistence. Genes differentially expressed during the transition from cell proliferation to expansion were enriched in genes involved in cell cycle, photosynthesis, and chloroplast retrograde signaling. Proliferating primordia treated with norflurazon, a chemical inhibitor of retrograde signaling, showed inhibited onset of cell expansion. Hence, differentiation of the photosynthetic machinery is important for regulating the exit from proliferation.


Subject(s)
Arabidopsis/growth & development , Cell Differentiation , Cell Proliferation , Meristem/cytology , Photosynthesis , Plant Leaves/cytology , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Biomarkers/metabolism , Cell Cycle , Cell Shape , Cell Size , Gene Expression Profiling , Gene Expression Regulation, Plant , Image Processing, Computer-Assisted , Meristem/metabolism , Oligonucleotide Array Sequence Analysis , Plant Leaves/genetics , Plant Leaves/metabolism , RNA, Plant/genetics
13.
Plant Cell Environ ; 35(2): 321-33, 2012 Feb.
Article in English | MEDLINE | ID: mdl-21443606

ABSTRACT

Under environmental stresses, plant development is adaptively modulated. This modulation is influenced by the steady-state balance (homeostasis) between reactive oxygen species (ROS) and phytohormones. Frequently observed symptoms in plant stress adaptation responses include growth retardation, reduced metabolism and photosynthesis, reallocation of metabolic resources and increased antioxidant activities to maximize plant survival under adverse environmental conditions. In view of stress-induced morphogenetic changes during adaptation, ROS and auxin are the main players in the regulatory networks because both are strongly affected by exposure to environmental cues. However, the mechanisms underlying the crosstalk between ROS and auxin are poorly understood. In this review, we aim at surveying how the integration of environmental stress-related signals is modulated by crosstalk between ROS and auxin regulatory networks.


Subject(s)
Homeostasis/physiology , Indoleacetic Acids/metabolism , Plant Growth Regulators/metabolism , Plants/metabolism , Reactive Oxygen Species/metabolism , Adaptation, Physiological/physiology , Antioxidants/metabolism , Biological Transport , Chloroplasts/metabolism , Oxidation-Reduction , Photosynthesis , Plant Development , Plant Physiological Phenomena , Signal Transduction/physiology , Stress, Physiological/physiology
15.
Plant Cell ; 20(9): 2339-56, 2008 Sep.
Article in English | MEDLINE | ID: mdl-18790826

ABSTRACT

Plants are simultaneously exposed to abiotic and biotic hazards. Here, we show that local and systemic acclimation in Arabidopsis thaliana leaves in response to excess excitation energy (EEE) is associated with cell death and is regulated by specific redox changes of the plastoquinone (PQ) pool. These redox changes cause a rapid decrease of stomatal conductance, global induction of ASCORBATE PEROXIDASE2 and PATHOGEN RESISTANCE1, and increased production of reactive oxygen species (ROS) and ethylene that signals through ETHYLENE INSENSITIVE2 (EIN2). We provide evidence that multiple hormonal/ROS signaling pathways regulate the plant's response to EEE and that EEE stimulates systemic acquired resistance and basal defenses to virulent biotrophic bacteria. In the Arabidopsis LESION SIMULATING DISEASE1 (lsd1) null mutant that is deregulated for EEE acclimation responses, propagation of EEE-induced programmed cell death depends on the plant defense regulators ENHANCED DISEASE SUSCEPTIBILITY1 (EDS1) and PHYTOALEXIN DEFICIENT4 (PAD4). We find that EDS1 and PAD4 operate upstream of ethylene and ROS production in the EEE response. The data suggest that the balanced activities of LSD1, EDS1, PAD4, and EIN2 regulate signaling of programmed cell death, light acclimation, and holistic defense responses that are initiated, at least in part, by redox changes of the PQ pool.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Chloroplasts/metabolism , Light , Signal Transduction/radiation effects , Arabidopsis/genetics , Arabidopsis/immunology , Arabidopsis Proteins/genetics , Carboxylic Ester Hydrolases/genetics , Carboxylic Ester Hydrolases/metabolism , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Gene Expression Regulation, Plant/radiation effects , Models, Biological , Oxidation-Reduction , Peroxidases/genetics , Peroxidases/metabolism , Plastoquinone/metabolism , Reactive Oxygen Species/metabolism , Receptors, Cell Surface/genetics , Receptors, Cell Surface/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Signal Transduction/genetics , Signal Transduction/physiology , Transcription Factors/genetics , Transcription Factors/metabolism
16.
Plant Cell ; 19(11): 3819-30, 2007 Nov.
Article in English | MEDLINE | ID: mdl-18055613

ABSTRACT

Aerenchyma tissues form gas-conducting tubes that provide roots with oxygen under hypoxic conditions. Although aerenchyma have received considerable attention in Zea mays, the signaling events and genes controlling aerenchyma induction remain elusive. Here, we show that Arabidopsis thaliana hypocotyls form lysigenous aerenchyma in response to hypoxia and that this process involves H(2)O(2) and ethylene signaling. By studying Arabidopsis mutants that are deregulated for excess light acclimation, cell death, and defense responses, we find that the formation of lysigenous aerenchyma depends on the plant defense regulators LESION SIMULATING DISEASE1 (LSD1), ENHANCED DISEASE SUSCEPIBILITY1 (EDS1), and PHYTOALEXIN DEFICIENT4 (PAD4) that operate upstream of ethylene and reactive oxygen species production. The obtained results indicate that programmed cell death of lysigenous aerenchyma in hypocotyls occurs in a similar but independent manner from the foliar programmed cell death. Thus, the induction of aerenchyma is subject to a genetic and tissue-specific program. The data lead us to conclude that the balanced activities of LSD1, EDS1, and PAD4 regulate lysigenous aerenchyma formation in response to hypoxia.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/cytology , DNA-Binding Proteins/metabolism , Transcription Factors/metabolism , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Cell Hypoxia , Ethylenes/metabolism , Gene Expression Regulation, Plant , Hydrogen Peroxide/metabolism , Hypocotyl/cytology , Models, Biological , Mutation/genetics , Organ Specificity , Plant Roots/cytology , Plant Shoots/cytology , Plant Stomata/cytology
17.
J Exp Bot ; 57(8): 1795-807, 2006.
Article in English | MEDLINE | ID: mdl-16698814

ABSTRACT

Sudden exposure of plants to high light (HL) leads to metabolic and physiological disruption of the photosynthetic cells. Changes in ROS content, adjustment of photosynthetic processes and the antioxidant pools and, ultimately, gene induction are essential components for a successful acclimation to the new light conditions. The influence of salicylic acid (SA) on plant growth, short-term acclimation to HL, and on the redox homeostasis of Arabidopsis thaliana leaves was assessed here. The dwarf phenotype displayed by mutants with high SA content (cpr1-1, cpr5-1, cpr6-1, and dnd1-1) was less pronounced when these plants were grown in HL, suggesting that the inhibitory effect of SA on growth was partly overcome at higher light intensities. Moreover, higher SA content affected energy conversion processes in low light, but did not impair short-term acclimation to HL. On the other hand, mutants with low foliar SA content (NahG and sid2-2) were impaired in acclimation to transient exposure to HL and thus predisposed to oxidative stress. Low and high SA levels were strictly correlated to a lower and higher foliar H(2)O(2) content, respectively. Furthermore high SA was also associated with higher GSH contents, suggesting a tight correlation between SA, H(2)O(2) and GSH contents in plants. These observations implied an essential role of SA in the acclimation processes and in regulating the redox homeostasis of the cell. Implications for the role of SA in pathogen defence signalling are also discussed.


Subject(s)
Acclimatization/physiology , Arabidopsis/metabolism , Oxidation-Reduction , Photosynthesis/physiology , Salicylic Acid/metabolism , Antioxidants/metabolism , Arabidopsis/growth & development , Biomass , Carbon Dioxide/metabolism , Catalase/metabolism , Glutathione/metabolism , Glutathione Reductase/metabolism , Homeostasis/physiology , Light , Plant Leaves/metabolism , Reactive Oxygen Species/metabolism , Starch/metabolism , Superoxide Dismutase/metabolism
18.
Plant Cell Physiol ; 46(1): 118-29, 2005 Jan.
Article in English | MEDLINE | ID: mdl-15659446

ABSTRACT

In this study, we have investigated the role of the CAO gene (coding for the chloroplast recognition particle cpSRP43) in the protection against and acclimation to environmental conditions that promote photooxidative stress. Deficiency of cpSRP43 in the Arabidopsis mutant chaos has been shown previously to lead to partial loss of a number of proteins of the photosystem II (PSII) antennae. In addition, as reported here, mutant plants have lower growth rates and reduced lignin contents under laboratory conditions. However, chaos seedlings showed significantly higher tolerance to photooxidative stress under both tightly controlled laboratory conditions and highly variable conditions in the field. This greater tolerance of chaos plants was manifested in less photooxidative damage together with faster growth recovery in young seedlings. It was also associated with a lower production of H2O2, lower ascorbate levels and less induction of ascorbate peroxidases. Under field conditions, chaos exhibited better overall photosynthetic performance and had higher survival rates. Expression of the CAO gene may be regulated by a light-dependent chloroplastic redox signalling pathway, and was inhibited during acclimation to high light and chilling temperatures, simultaneously with induction of ascorbate peroxidases. It is concluded that the presence/absence of the CAO gene has an impact on photo-produced H2O2, lignification in the hypocotyls and on the plant's susceptibility to photooxidative stress. Therefore, regulation of the CAO gene may be part of the plant's system for acclimation to high light and chilling temperatures.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Signal Recognition Particle/metabolism , Acclimatization , Arabidopsis/genetics , Arabidopsis/growth & development , Arabidopsis Proteins/genetics , Chloroplast Proteins , Gene Expression Regulation, Plant , Genes, Plant , Hydrogen Peroxide/metabolism , Lignin/metabolism , Mutation , Oxidative Stress , Photobiology , Pigments, Biological/metabolism , Signal Recognition Particle/genetics , Temperature
19.
Plant Physiol ; 136(1): 2818-30, 2004 Sep.
Article in English | MEDLINE | ID: mdl-15347794

ABSTRACT

The lsd1 mutant of Arabidopsis fails to limit the boundaries of hypersensitive cell death response during avirulent pathogen infection and initiates unchecked lesions in long day photoperiod giving rise to the runaway cell death (rcd) phenotype. We link here the initiation and propagation of rcd to the activity of photosystem II, stomatal conductance and ultimately to photorespiratory H(2)O(2). A cross of lsd1 with the chlorophyll a/b binding harvesting-organelle specific (designated cao) mutant, which has a reduced photosystem II antenna, led to reduced lesion formation in the lsd1/cao double mutant. This lsd1 mutant also had reduced stomatal conductance and catalase activity in short-day permissive conditions and induced H(2)O(2) accumulation followed by rcd when stomatal gas exchange was further impeded. All of these traits depended on the defense regulators EDS1 and PAD4. Furthermore, nonphotorespiratory conditions retarded propagation of lesions in lsd1. These data suggest that lsd1 failed to acclimate to light conditions that promote excess excitation energy (EEE) and that LSD1 function was required for optimal catalase activity. Through this regulation LSD1 can influence the effectiveness of photorespiration in dissipating EEE and consequently may be a key determinant of acclimatory processes. Salicylic acid, which induces stomatal closure, inhibits catalase activity and triggers the rcd phenotype in lsd1, also impaired acclimation of wild-type plants to conditions that promote EEE. We propose that the roles of LSD1 in light acclimation and in restricting pathogen-induced cell death are functionally linked.


Subject(s)
Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Arabidopsis/genetics , Arabidopsis/metabolism , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Arabidopsis/cytology , Arabidopsis/radiation effects , Base Sequence , Catalase/genetics , Catalase/metabolism , Cell Death/genetics , DNA, Plant/genetics , Genes, Plant , Light , Mutation , Peronospora/pathogenicity , Phenotype , Photosystem II Protein Complex/metabolism , Salicylic Acid/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...