Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 14(1): e0210342, 2019.
Article in English | MEDLINE | ID: mdl-30650113

ABSTRACT

The non-proteinogenic amino acid ornithine links several stress response pathways. From a previous study we know that ornithine accumulates in response to low CO2. To investigate ornithine accumulation in plants, we shifted plants to either low CO2 or low light. Both conditions increased carbon limitation, but only low CO2 also increased the rate of photorespiration. Changes in metabolite profiles of light- and CO2-limited plants were quite similar. Several amino acids that are known markers of senescence accumulated strongly under both conditions. However, urea cycle intermediates respond differently between the two treatments. While the levels of both ornithine and citrulline were much higher in plants shifted to 100 ppm CO2 compared to those kept in 400 ppm CO2, their metabolite abundance did not significantly change in response to a light limitation. Furthermore, both ornithine and citrulline accumulation is independent from sugar starvation. Exogenous supplied sugar did not significantly change the accumulation of the two metabolites in low CO2-stressed plants, while the accumulation of other amino acids was reduced by about 50%. Gene expression measurements showed a reduction of the entire arginine biosynthetic pathway in response to low CO2. Genes in both proline biosynthesis and degradation were induced. Hence, proline did not accumulate in response to low CO2 like observed for many other stresses. We propose that excess of nitrogen re-fixed during photorespiration can be alternatively stored in ornithine and citrulline under low CO2 conditions. Furthermore, ornithine is converted to pyrroline-5-carboxylate by the action of δOAT.


Subject(s)
Arabidopsis/metabolism , Carbon Dioxide/metabolism , Urea/metabolism , Arabidopsis/genetics , Arabidopsis/radiation effects , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Arginine/biosynthesis , Biosynthetic Pathways/genetics , Citrulline/metabolism , Gene Expression Regulation, Plant , Genes, Plant , Light , Models, Biological , Mutation , Ornithine/biosynthesis , Ornithine/metabolism , Ornithine-Oxo-Acid Transaminase/genetics , Ornithine-Oxo-Acid Transaminase/metabolism , Proline/biosynthesis , Proline/metabolism , Pyrroles/metabolism , RNA, Plant/genetics , Stress, Physiological , Sucrose/metabolism
2.
Environ Microbiol ; 20(8): 2671-2685, 2018 08.
Article in English | MEDLINE | ID: mdl-30028074

ABSTRACT

Within the wealth of molecules constituting marine dissolved organic matter, carbohydrates make up the largest coherent and quantifiable fraction. Their main sources are from primary producers, which release large amounts of photosynthetic products - mainly polysaccharides - directly into the surrounding water via passive and active exudation. The organic carbon and other nutrients derived from these photosynthates enrich the 'phycosphere' and attract heterotrophic bacteria. The rapid uptake and remineralization of dissolved free monosaccharides by heterotrophic bacteria account for the barely detectable levels of these compounds. By contrast, dissolved combined polysaccharides can reach high concentrations, especially during phytoplankton blooms. Polysaccharides are too large to be taken up directly by heterotrophic bacteria, instead requiring hydrolytic cleavage to smaller oligo- or monomers by bacteria with a suitable set of exoenzymes. The release of diverse polysaccharides by various phytoplankton taxa is generally interpreted as the deposition of excess organic material. However, these molecules likely also fulfil distinct, yet not fully understood functions, as inferred from their active modulation in terms of quality and quantity when phytoplankton becomes nutrient limited or is exposed to heterotrophic bacteria. This minireview summarizes current knowledge regarding the exudation and composition of phytoplankton-derived exopolysaccharides and acquisition of these compounds by heterotrophic bacteria.


Subject(s)
Bacteria/metabolism , Heterotrophic Processes , Phytoplankton/metabolism , Polysaccharides/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...