Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Publication year range
1.
J Vet Intern Med ; 35(5): 2359-2365, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34486182

ABSTRACT

BACKGROUND: Clinical signs and their progression in Beagles with Lafora disease are poorly described. OBJECTIVES: To describe clinical signs in Beagles with Lafora disease. ANIMALS: Twenty-eight Beagles with Lafora disease confirmed by genetic testing or histopathology. METHODS: Retrospective multicenter case series. Data regarding signalment, clinical signs, diagnostic tests and treatment were retrieved from hospital data files. A questionnaire was sent to owners asking about neurological deficits, changes in cognitive functions, behavioral changes, response to treatment and survival time. RESULTS: Onset of clinical signs was 8.3 years (mean; range, 6.3-13.3). All dogs had myoclonic episodes as an initial clinical sign with tonic-clonic seizures in n = 11/28 (39%) and n = 12/28 (43%) later developing tonic-clonic seizures. Deficits of coordination (n = 21/25; 84%), impaired vision (n = 15/26; 58%), and impaired hearing (n = 13/26; 50%) developed later. Mental decline was observed as loss of house training (urination; n = 8/25; 32%), difficulties performing learned tasks (n = 9/25; 36%), and difficulties learning new tasks (n = 7/23; 30%). Common behavioral changes were: increased photosensitivity (n = 20/26; 77%), staring into space (n = 16/25; 64%), reduced stress resistance (n = 15/26; 58%), increased noise sensitivity (n = 14/26; 54%), and separation anxiety (n = 11/25; 44%). Twenty-one dogs were alive (median age 11.9 years; range, 9.8-18.6), and 7 dogs were dead (mean age 12.1 years; SD: 1.3; range, 10.5-12.6) at time of writing. CONCLUSIONS AND CLINICAL IMPORTANCE: Lafora disease in Beagles causes significant behavioral changes, and mental decline as well as neurological deficits in addition to myoclonic episodes and generalized tonic-clonic seizures. Nevertheless, a relatively normal life span can be expected.


Subject(s)
Dog Diseases , Lafora Disease , Animals , Dog Diseases/diagnosis , Dog Diseases/genetics , Dogs , Electroencephalography , Genetic Testing/veterinary , Lafora Disease/diagnosis , Lafora Disease/genetics , Lafora Disease/veterinary , Retrospective Studies , Seizures/veterinary
2.
Article in German | MEDLINE | ID: mdl-31814088

ABSTRACT

OBJECTIVE: Exercise induced metabolic myopathy in German Hunting Terrier dogs is an autosomal-recessively inherited disorder, caused by a nonsense variant of the gene encoding for the very long-chain acyl-CoA-dehydrogenase (VLCAD) enzyme. Clinical signs include exercise- induced fatigue, muscle pain and weakness. In the present study, the long-term course of this disease was investigated over a period of 1 year in 9 affected German Hunting Terriers. The dogs were treated symptomatically with oral L-carnitine, coenzyme Q10 and a special diet characterized by a low content of long-chain fatty acids and a high proportion of carbohydrates. MATERIAL AND METHODS: In 9 affected dogs, the phenotype as well as clinical, laboratory parameters, and histopathological findings are described (time point 1) and compared to follow-up examinations 1 year later (time point 2). At both time points clinical and neurological examinations, complete blood cell count, clinical chemistry profile and the concentration of brain natriuretic peptide (NT-proBNP) were investigated. RESULTS: In the follow-up examinations, the same post-exercise clinical signs were present as in the initial presentation of the homozygous dogs. Dark-brownish discoloration of the urine, weakness, myalgia as well as stiff and tetraparetic gait were apparant. All hematological values and the concentration of NT-proBNP were within the relevant reference ranges. Plasma CK and ALT activities were compared between the first presentation and the follow- up examination and no significant differences were detected (pCK = 0.31, pALT = 0.64). Signs of myopathy remained unchanged throughout the examination period. CONCLUSION AND CLINICAL RELEVANCE: Oral supplementation with L-carnitine, coenzyme Q10 and the special dietary management did not result in any improvement of clinical signs or laboratory parameters. No progression of the disease was observed. The prognosis for affected dogs remains cautious as long-term observations of affected dogs over several years are lacking. Our findings provide further important information on inherited disorders of mitochondrial ß-oxidation in dogs, especially focused on the exercise induced metabolic myopathy in the German Hunting Terrier. This may provide new insights for novel treatment modalities in conjuntion with the development of improved breeding guidelines.


Subject(s)
Dog Diseases , Muscular Diseases , Physical Conditioning, Animal/adverse effects , Acyl-CoA Dehydrogenase, Long-Chain/genetics , Animals , Carnitine/therapeutic use , Diet , Dog Diseases/diagnosis , Dog Diseases/genetics , Dog Diseases/therapy , Dogs , Follow-Up Studies , Muscular Diseases/diagnosis , Muscular Diseases/genetics , Muscular Diseases/therapy , Muscular Diseases/veterinary , Ubiquinone/analogs & derivatives , Ubiquinone/therapeutic use
3.
G3 (Bethesda) ; 8(5): 1545-1554, 2018 05 04.
Article in English | MEDLINE | ID: mdl-29491033

ABSTRACT

Several enzymes are involved in fatty acid oxidation, which is a key process in mitochondrial energy production. Inherited defects affecting any step of fatty acid oxidation can result in clinical disease. We present here an extended family of German Hunting Terriers with 10 dogs affected by clinical signs of exercise induced weakness, muscle pain, and suspected rhabdomyolysis. The combination of clinical signs, muscle histopathology and acylcarnitine analysis with an elevated tetradecenoylcarnitine (C14:1) peak suggested a possible diagnosis of acyl-CoA dehydrogenase very long chain deficiency (ACADVLD). Whole genome sequence analysis of one affected dog and 191 controls revealed a nonsense variant in the ACADVL gene encoding acyl-CoA dehydrogenase very long chain, c.1728C>A or p.(Tyr576*). The variant showed perfect association with the phenotype in the 10 affected and more than 500 control dogs of various breeds. Pathogenic variants in the ACADVL gene have been reported in humans with similar myopathic phenotypes. We therefore considered the detected variant to be the most likely candidate causative variant for the observed exercise induced myopathy. To our knowledge, this is the first description of this disease in dogs, which we propose to name exercise induced metabolic myopathy (EIMM), and the identification of the first canine pathogenic ACADVL variant. Our findings provide a large animal model for a known human disease and will enable genetic testing to avoid the unintentional breeding of affected offspring.


Subject(s)
Acyl-CoA Dehydrogenase, Long-Chain/genetics , Codon, Nonsense/genetics , Muscular Diseases/genetics , Muscular Diseases/metabolism , Animals , Base Sequence , Biopsy , Dogs , Female , Genetic Association Studies , Male , Muscular Diseases/enzymology , Muscular Diseases/pathology , Pedigree , Physical Conditioning, Animal , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL
...