Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 15(21)2022 Oct 25.
Article in English | MEDLINE | ID: mdl-36363082

ABSTRACT

Sodium iron hexacyanoferrate (NaFeHCF) films were electrodeposited on Au/Cr/Si for the study of growth behavior and physical properties. The NaFeHCF films were studied by different analytical methods to prove the chemical composition, morphology and crystal structure. The grains of the film grow with a cubic structure with an average lattice parameter of 10.10 Å and the preferential growth direction along the [111] direction of the cubic cell. The films show a repeatable bipolar resistive switching behavior accompanied by high current changes (up to a factor of ~105). The different resistive states in the materials are dominated by ohmic conduction.

2.
Nanomaterials (Basel) ; 12(16)2022 Aug 22.
Article in English | MEDLINE | ID: mdl-36014746

ABSTRACT

The electrical conduction mechanism of resistive switching Prussian white (PW) thin films obtained by the electrodeposition method was examined by AC impedance spectroscopy and DC current-voltage measurements. Using an electrode tip to contact PW grown over Au, robust unipolar resistive switching was observed with a current change of up to three orders of magnitude, high repeatability, and reproducibility. Moreover, electrical impedance spectroscopy showed that the resistive switching comes from small conductive filaments formed by potassium ions before the establishment of larger conductive channels. Both voltammetry and EIS measurements suggest that the electrical properties and conductive filament formation are influenced by defects and ions present in the grain boundaries. Thus, PW is a potential material for the next generation of ReRAM devices.

3.
Materials (Basel) ; 13(24)2020 Dec 09.
Article in English | MEDLINE | ID: mdl-33317130

ABSTRACT

Prussian blue (PB) layers were electrodeposited for the fabrication of Au/PB/Ag stacks to study the resistive switching effect. The PB layers were characterized by different techniques to prove the homogeneity, composition, and structure. Electrical measurements confirmed the bipolar switching behavior with at least 3 orders of magnitude in current and the effect persisting for the 200 cycles tested. The low resistance state follows the ohmic conduction with an activation energy of 0.2 eV.

SELECTION OF CITATIONS
SEARCH DETAIL
...