Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Nutr Biochem ; 34: 106-17, 2016 08.
Article in English | MEDLINE | ID: mdl-27288935

ABSTRACT

This study investigated whether sulforaphane (SFN), a compound found in cruciferous vegetables, could attenuate the progression of post-myocardial infarction (MI) cardiac remodeling. Male Wistar rats (350 g) were allocated to four groups: SHAM (n=8), SHAM+SFN (n=7), MI (n=8) and MI+SFN (n=5). On the third day after surgery, cardiac function was assessed and SFN treatment (5 mg/kg/day) was started. At the end of 25 days of treatment, cardiac function was assessed and heart was collected to measure collagen content, oxidative stress and protein kinase. MI and MI+SFN groups presented cardiac dysfunction, without signs of congestion. Sulforaphane reduced fibrosis (2.1-fold) in infarcted rats, which was associated with a slight attenuation in the cardiac remodeling process. Both infarcted groups presented increases in the oxidative markers xanthine oxidase and 4-hydroxinonenal, as well as a parallel increase in the antioxidant enzymes glutathione peroxidase and superoxide dismutase. Moreover, sulforaphane stimulated the cytoprotective heme oxygenase-1 (HO-1) (38%). Oxidative markers correlated with ERK 1/2 activation. In the MI+SFN group, up-regulation of ERK 1/2 (34%) and Akt (35%), as well as down-regulation of p38 (52%), was observed. This change in the prosurvival kinase balance in the MI+SFN group was related to a down-regulation of apoptosis pathways (Bax/Bcl-2/caspase-3). Sulforaphane was unable to modulate autophagy. Taken together, sulforaphane increased HO-1, which may generate a redox environment in the cardiac tissue favorable to activation of prosurvival and deactivation of prodeath pathways. In conclusion, this natural compound contributes to attenuation of the fibrotic process, which may contribute to mitigation against the progression of cardiac remodeling postinfarction.


Subject(s)
Antioxidants/therapeutic use , Apoptosis Regulatory Proteins/metabolism , Heart Ventricles/drug effects , Isothiocyanates/therapeutic use , Myocardial Reperfusion Injury/prevention & control , Oxidative Stress/drug effects , Ventricular Remodeling/drug effects , Animals , Antioxidants/administration & dosage , Apoptosis/drug effects , Autophagy/drug effects , Biomarkers/blood , Biomarkers/metabolism , Fibrosis , Heart Ventricles/metabolism , Heart Ventricles/pathology , Heart Ventricles/physiopathology , Heme Oxygenase-1/chemistry , Heme Oxygenase-1/metabolism , Injections, Intraperitoneal , Isothiocyanates/administration & dosage , MAP Kinase Signaling System/drug effects , Male , Myocardial Reperfusion Injury/metabolism , Myocardial Reperfusion Injury/pathology , Myocardial Reperfusion Injury/physiopathology , Random Allocation , Rats, Wistar , Sulfoxides
2.
Can J Physiol Pharmacol ; 94(5): 508-16, 2016 May.
Article in English | MEDLINE | ID: mdl-26900720

ABSTRACT

Sulforaphane, a natural isothiocyanate, demonstrates cardioprotection associated with its capacity to stimulate endogenous antioxidants and to inhibit inflammation. The aim of this study was to investigate whether sulforaphane is capable of attenuating oxidative stress and inflammatory responses through the TLR4/MyD88/NFκB pathway, and thereby could modulate post-ischemic ventricular function in isolated rat hearts submitted to ischemia and reperfusion. Male Wistar rats received sulforaphane (10 mg·kg(-1)·day(-1)) or vehicle i.p. for 3 days. Global ischemia was performed using isolated hearts, 24 h after the last injection, by interruption of the perfusion flow. The protocol included a 20 min pre-ischemic period followed by 20 min of ischemia and a 20 min reperfusion. Although no changes in mechanical function were observed, sulforaphane induced a significant increase in superoxide dismutase and heme oxygenase-1 expression (both 66%) and significantly reduced reactive oxygen species levels (7%). No differences were observed for catalase and glutathione peroxidase expression or their activities, nor for thioredoxin reductase, glutaredoxin reductase and glutathione-S-transferase. No differences were found in lipid peroxidation or TLR4, MyD88, and NF-κB expression. In conclusion, although sulforaphane was able to stimulate endogenous antioxidants modestly, this result did not impact inflammatory signaling or cardiac function of hearts submitted to ischemia and reperfusion.


Subject(s)
Antioxidants/therapeutic use , Heart/drug effects , Isothiocyanates/therapeutic use , Myocardial Reperfusion Injury/prevention & control , Myocardium/metabolism , Oxidative Stress/drug effects , Signal Transduction/drug effects , Animals , Anti-Inflammatory Agents, Non-Steroidal/therapeutic use , Cardiotonic Agents/therapeutic use , Heart/physiopathology , Heme Oxygenase-1/chemistry , Heme Oxygenase-1/metabolism , In Vitro Techniques , Lipid Peroxidation/drug effects , Male , Myeloid Differentiation Factor 88/metabolism , Myocardial Reperfusion Injury/immunology , Myocardial Reperfusion Injury/metabolism , Myocardial Reperfusion Injury/physiopathology , Myocardium/enzymology , Myocardium/immunology , NF-kappa B , Perfusion , Random Allocation , Rats, Wistar , Reactive Oxygen Species/antagonists & inhibitors , Reactive Oxygen Species/metabolism , Sulfoxides , Superoxide Dismutase/chemistry , Superoxide Dismutase/metabolism , Toll-Like Receptor 4/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...