Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Biomed Mater Res B Appl Biomater ; 105(8): 2574-2580, 2017 Nov.
Article in English | MEDLINE | ID: mdl-27701814

ABSTRACT

In cochlear implant (CI) patients, an increase in electrode impedance due to fibrotic encapsulation is frequently observed. Several attempts have been proposed to reduce fibroblast growth at the electrode contacts, but none proved to be satisfactory so far. Here, a silicone fiber coating of the electrode contacts is presented that provides a complex micro-scale surface topography and increases hydrophobicity to inhibit fibroblast growth and adhesion. A silicone fiber electrospinning process was developed to create a thin and porous fiber mesh. Fiber coatings were applied on graphite specimen holders, glass cover slips and CI electrode contacts. For characterization of the coating's pore distribution, water contact angle and electrical impedance were analyzed. Cytotoxicity and in vitro fibroblast growth were evaluated to assess biological efficacy of the coatings. It could be shown that the silicone fiber mesh itself had only minor influence on electrode impedance. A uniform, hydrophobic fiber coating could be achieved that decreased fibroblast growth without showing toxic effects. Finally, CI electrode contacts were successfully coated in order to present this promising approach for a long-term improvement of CI electrodes. We are one of the first groups that could successfully adapt the electrospinning technique on the utilization of silicone. Silicone was chosen because of its high hydrophobicity, chemical stability and excellent biocompatibility and as it is one of the biomaterials already used in CIs. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 2574-2580, 2017.


Subject(s)
Cell Proliferation , Coated Materials, Biocompatible/chemistry , Cochlear Implants , Fibroblasts/metabolism , Silicones/chemistry , Animals , Fibroblasts/cytology , Hydrophobic and Hydrophilic Interactions , Mice , NIH 3T3 Cells
SELECTION OF CITATIONS
SEARCH DETAIL
...