Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Res Sq ; 2023 Jun 02.
Article in English | MEDLINE | ID: mdl-37398216

ABSTRACT

Background : Widely reported by bipolar disorder (BD) patients, cognitive symptoms, including deficits in executive function, memory, attention, and timing are under-studied. Work suggests that individuals with BD show impairments in interval timing tasks, including supra-second, sub-second, and implicit motor timing compared to the neuronormative population. However, how time perception differs within individuals with BD based on BD sub-type (BDI vs II), mood, or antipsychotic medication-use has not been thoroughly investigated. The present work administered a supra-second interval timing task concurrent with electroencephalography (EEG) to patients with BD and a neuronormative comparison group. As this task is known to elicit frontal theta oscillations, signal from the frontal (Fz) lead was analyzed at rest and during the task. Results : Results suggest that individuals with BD show impairments in supra-second interval timing and reduced frontal theta power compared during the task to neuronormative controls. However, within BD sub-groups, neither time perception nor frontal theta differed in accordance with BD sub-type, mood, or antipsychotic medication use. Conclusions : his work suggests that BD sub-type, mood status or antipsychotic medication use does not alter timing profile or frontal theta activity. Together with previous work, these findings point to timing impairments in BD patients across a wide range of modalities and durations indicating that an altered ability to assess the passage of time may be a fundamental cognitive abnormality in BD.

2.
Front Neurosci ; 17: 1203488, 2023.
Article in English | MEDLINE | ID: mdl-37469842

ABSTRACT

Introduction: Given the wide-ranging involvement of cerebellar activity in motor, cognitive, and affective functions, clinical outcomes resulting from cerebellar damage can be hard to predict. Cerebellar vascular accidents are rare, comprising less than 5% of strokes, yet this rare patient population could provide essential information to guide our understanding of cerebellar function. Methods: To gain insight into which domains are affected following cerebellar damage, we retrospectively examined neuropsychiatric performance following cerebellar vascular accidents in cases registered on a database of patients with focal brain injuries. Neuropsychiatric testing included assessment of cognitive (working memory, language processing, and perceptual reasoning), motor (eye movements and fine motor control), and affective (depression and anxiety) domains. Results: Results indicate that cerebellar vascular accidents are more common in men and starting in the 5th decade of life, in agreement with previous reports. Additionally, in our group of twenty-six patients, statistically significant performance alterations were not detected at the group level an average of 1.3 years following the vascular accident. Marginal decreases in performance were detected in the word and color sub-scales of the Stroop task, the Rey Auditory Verbal Learning Test, and the Lafayette Grooved Pegboard Test. Discussion: It is well established that the acute phase of cerebellar vascular accidents can be life-threatening, largely due to brainstem compression. In the chronic phase, our findings indicate that recovery of cognitive, emotional, and affective function is likely. However, a minority of individuals may suffer significant long-term performance impairments in motor coordination, verbal working memory, and/or linguistic processing.

3.
Addict Biol ; 27(1): e13106, 2022 01.
Article in English | MEDLINE | ID: mdl-34672059

ABSTRACT

Infralimbic cortical (IL) manipulations indicate that this region mediates extinction learning and suppresses cocaine seeking following cocaine self-administration. However, little work has recorded IL activity during the inhibition of cocaine seeking due to the difficulty of determining precisely when cocaine-seeking behaviour is inhibited within a cocaine-seeking session. The present study used in vivo electrophysiology to examine IL activity across extinction as well as during cocaine self-administration and reinstatement. Sprague-Dawley rats underwent 6-h access cocaine self-administration in which the response lever was available during discrete signalled trials, a procedure which allowed for the comparison between epochs of cocaine seeking versus the inhibition thereof. Subsequently, rats underwent extinction and cocaine-primed reinstatement using the same procedure. Results indicate that theta rhythms (4-10 Hz) dominated IL local-field potential (LFP) activity during all experimental stages. During extinction, theta power fluctuated significantly surrounding the lever press and was lower when rats engaged in cocaine seeking versus when they withheld from doing so. These patterns of oscillatory activity differed from self-administration and reinstatement stages. Single-unit analyses indicate heterogeneity of IL unit responses, supporting the idea that multiple neuronal subpopulations exist within the IL and promote the expression of different and even opposing cocaine-seeking behaviours. Together, these results are consistent with the idea that aggregate synaptic and single-unit activity in the IL represent the engagement of the IL in action monitoring to promote adaptive behaviour in accordance with task contingencies and reveal critical insights into the relationship between IL activity and the inhibition of cocaine seeking.


Subject(s)
Brain/physiology , Cocaine/pharmacology , Drug-Seeking Behavior/physiology , Extinction, Psychological/drug effects , Animals , Male , Rats , Rats, Sprague-Dawley
5.
Psychopharmacology (Berl) ; 236(1): 479-490, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30003306

ABSTRACT

RATIONALE: The infralimbic cortex (IL) and its downstream projection target the nucleus accumbens shell (NAshell) mediate the active suppression of cocaine-seeking behavior. Although an optogenetic approach would be beneficial for stimulating the IL and its efferents to study their role during reinstatement of cocaine seeking, the use of channelrhodopsin introduces significant difficulties, as optimal stimulation parameters are not known. OBJECTIVES: The present experiments utilized a stable step-function opsin (SSFO) to potentiate endogenous activity in the IL and in IL terminals in the NAshell during cocaine-seeking tests to determine how these manipulations affect cocaine-seeking behaviors. METHODS: Rats first underwent 6-h access cocaine self-administration followed by 21-27 days in the homecage. Rats then underwent cue-induced and cocaine-primed drug-seeking tests during which the optogenetic manipulation was given. The same rats then underwent extinction training, followed by cue-induced and cocaine-primed reinstatements. RESULTS: Potentiation of endogenous IL activity did not significantly alter cue-induced or cocaine-primed drug seeking following the homecage period. However, following extinction training, enhancement of endogenous IL activity attenuated cue-induced reinstatement by 35% and cocaine-primed reinstatement by 53%. Stimulation of IL terminals in the NAshell did not consistently alter cocaine-seeking behavior. CONCLUSION: These results suggest the utility of an SSFO-based approach for enhancing activity in a structure without driving specific patterns of neuronal firing. However, the utility of an SSFO-based approach for axon terminal stimulation remains unclear. Moreover, these results suggest that the ability of the IL to reduce cocaine seeking depends, at least in part, on rats first having undergone extinction training.


Subject(s)
Cocaine-Related Disorders/physiopathology , Drug-Seeking Behavior/physiology , Nerve Net/physiopathology , Nucleus Accumbens/physiopathology , Opsins , Animals , Disease Models, Animal , Extinction, Psychological/physiology , Humans , Nucleus Accumbens/drug effects , Rats , Rats, Sprague-Dawley
6.
Pharmacol Biochem Behav ; 174: 53-63, 2018 11.
Article in English | MEDLINE | ID: mdl-28720520

ABSTRACT

Over the past decades, research has targeted the neurobiology regulating cocaine-seeking behaviors, largely in the hopes of identifying potential targets for the treatment of cocaine addiction. Although much of this work has focused on those systems driving cocaine seeking, recently, studies examining the inhibition of cocaine-related behaviors have made significant progress in uncovering the neural systems that attenuate cocaine seeking. Such systems include the infralimbic cortex, nucleus accumbens shell, and hypothalamus. Research in this field has focused largely on the infralimbic cortex, as activity in this region appears to attenuate cocaine seeking during reinstatement and contribute to extinction learning. However, an overarching theory of function for this region that includes its role in other types of reward seeking and learning remains to be determined. Furthermore, the precise relationship between other regions involved in attenuating cocaine-seeking behavior and the infralimbic cortex remains unclear. Recent advances in the use of viral vectors combined with optogenetics, chemogenetics, and other approaches have greatly affected our capacity to investigate those systems inhibiting behavior dependent on cocaine-associated memories. This review will present current understanding regarding the neurobiology underlying the inhibition of such behaviors, especially focusing on the extinction of such memories, and explore how viral-vector targeting of specific brain circuits has begun to alter, and will continue to enrich, our knowledge regarding this issue.


Subject(s)
Cocaine-Related Disorders/physiopathology , Cocaine/pharmacology , Drug-Seeking Behavior/physiology , Hippocampus/physiology , Hypothalamus/physiology , Neural Pathways/physiology , Nucleus Accumbens/physiopathology , Prefrontal Cortex/physiology , Animals , Behavior, Animal , Genetic Vectors , Memory , Rodentia , Viruses/genetics
7.
Mol Psychiatry ; 22(5): 647-655, 2017 05.
Article in English | MEDLINE | ID: mdl-28348382

ABSTRACT

Schizophrenia involves abnormalities in the medial frontal cortex that lead to cognitive deficits. Here we investigate a novel strategy to normalize medial frontal brain activity by stimulating cerebellar projections. We used an interval timing task to study elementary cognitive processing that requires both frontal and cerebellar networks that are disrupted in patients with schizophrenia. We report three novel findings. First, patients with schizophrenia had dysfunctional delta rhythms between 1-4 Hz in the medial frontal cortex. We explored cerebellar-frontal interactions in animal models and found that both frontal and cerebellar neurons were modulated during interval timing and had delta-frequency interactions. Finally, delta-frequency optogenetic stimulation of thalamic synaptic terminals of lateral cerebellar projection neurons rescued timing performance as well as medial frontal activity in a rodent model of schizophrenia-related frontal dysfunction. These data provide insight into how the cerebellum influences medial frontal networks and the role of the cerebellum in cognitive processing.


Subject(s)
Cerebellum/physiopathology , Frontal Lobe/physiopathology , Schizophrenia/physiopathology , Adult , Aged , Animals , Case-Control Studies , Cerebellum/pathology , Cognition/physiology , Disease Models, Animal , Electroencephalography/methods , Female , Frontal Lobe/pathology , Humans , Male , Middle Aged , Neural Pathways/pathology , Neural Pathways/physiopathology , Neurons/pathology , Prefrontal Cortex/pathology , Prefrontal Cortex/physiopathology , Rats , Rats, Long-Evans , Schizophrenia/pathology , Schizophrenia/therapy , Thalamus/physiopathology , Transcranial Direct Current Stimulation/methods
8.
Phys Rev E ; 94(1-1): 012132, 2016 Jul.
Article in English | MEDLINE | ID: mdl-27575101

ABSTRACT

Stochastic differential equations describe well many physical, biological, and sociological systems, despite the simplification often made in their derivation. Here the usage of simple stochastic differential equations to characterize and classify complex dynamical systems is proposed within a Bayesian framework. To this end, we develop a dynamic system classifier (DSC). The DSC first abstracts training data of a system in terms of time-dependent coefficients of the descriptive stochastic differential equation. Thereby the DSC identifies unique correlation structures within the training data. For definiteness we restrict the presentation of the DSC to oscillation processes with a time-dependent frequency ω(t) and damping factor γ(t). Although real systems might be more complex, this simple oscillator captures many characteristic features. The ω and γ time lines represent the abstract system characterization and permit the construction of efficient signal classifiers. Numerical experiments show that such classifiers perform well even in the low signal-to-noise regime.

9.
Article in English | MEDLINE | ID: mdl-30652121

ABSTRACT

An overview of grid-based numerical methods used in relativistic hydrodynamics (RHD) and magnetohydrodynamics (RMHD) is presented. Special emphasis is put on a comprehensive review of the application of high-resolution shock-capturing methods. Results of a set of demanding test bench simulations obtained with different numerical methods are compared in an attempt to assess the present capabilities and limits of the various numerical strategies. Applications to three astrophysical phenomena are briefly discussed to motivate the need for and to demonstrate the success of RHD and RMHD simulations in their understanding. The review further provides FORTRAN programs to compute the exact solution of the Riemann problem in RMHD, and to simulate 1D RMHD flows in Cartesian coordinates. ELECTRONIC SUPPLEMENTARY MATERIAL: Supplementary material is available for this article at 10.1007/lrca-2015-3.

10.
Phys Rev Lett ; 111(21): 211102, 2013 Nov 22.
Article in English | MEDLINE | ID: mdl-24313472

ABSTRACT

Our numerical simulations show that axisymmetric, torsional, magnetoelastic oscillations of magnetars with a superfluid core can explain the whole range of observed quasiperiodic oscillations (QPOs) in the giant flares of soft gamma-ray repeaters. There exist constant phase QPOs at f is < or approximately equal to 150 Hz and resonantly excited high-frequency QPOs (f>500 Hz), in good agreement with observations. The range of magnetic field strengths required to match the observed QPO frequencies agrees with that from spin-down estimates. These results suggest that there is at least one superfluid species in magnetar cores.

11.
Sci Am ; 295(4): 42-9, 2006 Oct.
Article in English | MEDLINE | ID: mdl-16989479
12.
Phys Rev Lett ; 96(16): 161101, 2006 Apr 28.
Article in English | MEDLINE | ID: mdl-16712210

ABSTRACT

We investigate new paths to supermassive black hole formation by considering the general relativistic evolution of a differentially rotating polytrope with a toroidal shape. We find that this polytrope is unstable to nonaxisymmetric modes, which leads to a fragmentation into self-gravitating, collapsing components. In the case of one such fragment, we apply a simplified adaptive mesh refinement technique to follow the evolution to the formation of an apparent horizon centered on the fragment. This is the first study of the onset of nonaxisymmetric dynamical instabilities of supermassive stars in full general relativity.

13.
Plant Physiol ; 132(1): 206-17, 2003 May.
Article in English | MEDLINE | ID: mdl-12746526

ABSTRACT

The formation of suberized and lignified barriers in the exodermis is suggested to be part of a suite of adaptations to flooded or waterlogged conditions, adjusting transport of solutes and gases in and out of roots. In this study, the composition of apoplasmic barriers in hypodermal cell walls and oxygen profiles in roots and the surrounding medium of four Amazon tree species that are subjected to long-term flooding at their habitat was analyzed. In hypodermal cell walls of the deciduous tree Crateva benthami, suberization is very weak and dominated by monoacids, 2-hydroxy acids, and omega-hydroxycarboxylic acids. This species does not show any morphological adaptations to flooding and overcomes the aquatic period in a dormant state. Hypodermal cells of Tabernaemontana juruana, a tree which is able to maintain its leaf system during the aquatic phase, are characterized by extensively suberized walls, incrusted mainly by the unsaturated C(18) omega-hydroxycarboxylic acid and the alpha,omega-dicarboxylic acid analogon, known as typical suberin markers. Two other evergreen species, Laetia corymbulosa and Salix martiana, contained 3- to 4-fold less aliphatic suberin in the exodermis, but more than 85% of the aromatic moiety of suberin are composed of para-hydroxybenzoic acid, suggesting a function of suberin in pathogen defense. No major differences in the lignin content among the species were observed. Determination of oxygen distribution in the roots and rhizosphere of the four species revealed that radial loss of oxygen can be effectively restricted by the formation of suberized barriers but not by lignification of exodermal cell walls.


Subject(s)
Oxygen/metabolism , Plant Roots/physiology , Protoplasts/physiology , Trees/growth & development , Biological Transport/physiology , Cell Membrane Permeability/physiology , Cell Wall/physiology , Lignin/metabolism , Lipids , Membrane Lipids/metabolism , Plant Leaves/physiology , Species Specificity , Trees/metabolism
14.
Living Rev Relativ ; 6(1): 7, 2003.
Article in English | MEDLINE | ID: mdl-28179862

ABSTRACT

This review is concerned with a discussion of numerical methods for the solution of the equations of special relativistic hydrodynamics (SRHD). Particular emphasis is put on a comprehensive review of the application of high-resolution shock-capturing methods in SRHD. Results of a set of demanding test bench simulations obtained with different numerical SRHD methods are compared. Three applications (astrophysical jets, gamma-ray bursts and heavy ion collisions) of relativistic flows are discussed. An evaluation of various SRHD methods is presented, and future developments in SRHD are analyzed involving extension to general relativistic hydrodynamics and relativistic magneto-hydrodynamics. The review further provides FORTRAN programs to compute the exact solution of a 1D relativistic Riemann problem with zero and nonzero tangential velocities, and to simulate 1D relativistic flows in Cartesian Eulerian coordinates using the exact SRHD Riemann solver and PPM reconstruction. ELECTRONIC SUPPLEMENTARY MATERIAL: Supplementary material is available for this article at 10.12942/lrr-2003-7 and is accessible for authorized users.

15.
Funct Plant Biol ; 29(9): 1025-1035, 2002 Aug.
Article in English | MEDLINE | ID: mdl-32689553

ABSTRACT

Adaptation to prolonged flooding was investigated using cuttings of two tree species from the Central Amazon white-water floodplain (Várzea). Morphological features and oxygen distribution patterns were correlated with metabolic changes under hypoxia, such as alterations in alcohol dehydrogenase (ADH) activity and adenylate energy charge (AEC) of root cells. Salix martiana (Leyb.) was able to react to hypoxic growth conditions with formation of adventitious roots rich in lysigenous aerenchyma, which facilitates root aeration by longitudinal oxygen transport and rhizosphere oxidation by radial oxygen loss (ROL). The oxygen concentration on the surface of adventitious roots of S. martiana reached 2-3 mg O2 L-1. The low resistance to gas exchange in Salix roots was reflected by low ADH activities, which ranged between 0.03-0.1 µmol NADH mg -1 min-1, and AEC values of 0.8-1 under hypoxic conditions. Adventitious roots were also formed by Tabernaemontana juruana ([Markgr.] Schumann ex. J.F. Macbride) during growth under low-oxygen conditions, although at a later stage. The gas-space continuum in roots of T. juruana was less pronounced, resulting in a 10-fold lower oxygen concentration in the root cortex under oxygen stress compared with adventitious roots of Salix. The lower oxygen content was reflected in 6-fold higher ADH activities and decreased AEC values. ROL occurred only at the non-suberized root tip, suggesting that the suberized hypodermis functions as a barrier against gas exchange between the root and the rhizosphere. These findings indicate that different strategies of adaptation to low oxygen levels are realized in the two species under investigation that occur naturally in the same ecosystem but inhabit different elevation sites.

16.
ALTEX ; 15(3): 115-122, 1998.
Article in English | MEDLINE | ID: mdl-11178509

ABSTRACT

Two different microbial toxicity tests were investigated concerning the possibility to reduce animal experiments in product testing. In the acute bioluminescence test the inhibition of the bacterial luminescence was measured. In the chronic DMS test the inhibition of the microbial metabolism of DMSO to DMS was recorded. The combination of both tests with the same organism Vibrio fischeri enhances the power as a toxicological indicator. We used well known alcohols and tensides. For 15 substances, the correlation between the experimental results and the Draize eye irritation test (rs = 0,943) and the intravenous toxicity (rs = 0,958) was statistically significant. If both tests gave EC50-values >10000mg/L, the substance could be categorised as non or mild toxic. If the EC50-values were <5mg/L, an extremely toxic substance could be expected. Neither false positive nor false negative results have been found, therefore the application of the method as a screening test or as a part in a test battery is conceivable.

SELECTION OF CITATIONS
SEARCH DETAIL
...