Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Front Immunol ; 14: 1263352, 2023.
Article in English | MEDLINE | ID: mdl-38274831

ABSTRACT

Introduction: The attenuation of BCG has led to the loss of not only immunogenic proteins but also lipid antigens. Methods: Thus, we compared the macrophage and T-cell responses to nonpolar lipid extracts harvested from BCG and Mycobacterium tuberculosis (Mtb) to better understand the role of BCG lipids in the already known diminished responses of the vaccine strain. Results: Relative to Mtb, nonpolar lipid extract from BCG presented a reduced capacity to trigger the expression of the genes encoding TNF, IL-1b, IL-6 and IL-10 in RAW 264.7 macrophages. Immunophenotyping of PBMCs isolated from healthy individuals revealed that lipids from both BCG and Mtb were able to induce an increased frequency of CD4+ and CD8+ T cells, but only the lipid extract from Mtb enhanced the frequency of CD4-CD8-double-negative, γσ+, CD4+HLA-DR+, and γσ+HLA-DR+ T cells relative to the nonstimulated control. Interestingly, only the Mtb lipid extract was able to increase the frequency of CD4+ memory (CD45RO+) T cells, whereas the BCG lipid extract induced a diminished frequency of CD4+ central memory (CD45RO+CCR7-) T cells after 48 h of culture compared to Mtb. Discussion: These findings show that the nonpolar lipids of the BCG bacilli presented diminished ability to trigger both proinflammatory and memory responses and suggest a potential use of Mtb lipids as adjuvants to increase the BCG vaccine efficacy.


Subject(s)
Mycobacterium bovis , Tuberculosis , Humans , BCG Vaccine , CD8-Positive T-Lymphocytes , Memory T Cells , CD4-Positive T-Lymphocytes , Macrophages , HLA-DR Antigens , Lipids
2.
Chem Sci ; 13(46): 13872-13878, 2022 Nov 30.
Article in English | MEDLINE | ID: mdl-36544743

ABSTRACT

Radical anions appear as intermediates in a variety of organic reductions and have recently garnered interest for their role as mediators for electron-driven catalysis as well as for organic electron conductor materials. Due to their unstable nature, the isolation of such organic radical anions is usually only possible by using extended aromatic systems, whereas non-aromatic unsaturated hydrocarbons have so far only been observed in situ. We herein report the first isolation, structure and spectroscopic characterization of a simple aryl substituted alkene radical anion, namely that of stilbene (1,2-diphenyl ethylene), achieved by encapsulation between two [K{18c6}] cations. The formation of the radical anion is accompanied by Z → E isomerization of the involved double bond, also on a catalytic scale. Employing the linear iron(i) complex [Fe(NR2)2]- as a reductant and coordination site also allows for this transformation, via formation of an iron(ii) bound radical anion. The use of the iron complex now also allows for Z → E isomerization of electron richer, simple alkenes bearing either mixed alkyl/aryl or even bis(alkyl) substitution.

3.
Dalton Trans ; 50(14): 4890-4903, 2021 Apr 14.
Article in English | MEDLINE | ID: mdl-33877186

ABSTRACT

The synthesis and characterization of neutral quasilinear 3d-metal(i) complexes of chromium to cobalt of the type [KM(N(Dipp)SiMe3)2] (Dipp = 2,6-di-iso-propylphenyl) are reported. In solid state these metal(i) complexes either occur as isolated molecules (Co) or are part of a potassium ion linked 1D-coordination polymer (Cr-Fe). In solution the potassium cation is either ligated within the ligand sphere of the metal silylamide or is separated from the complex depending on the solvent. For iron, we showcase that it is possible to use sodium or lithium metal for the reduction of the metal(ii) precursor. However, in these cases the resulting iron(i) complexes can only be isolated upon cation separation using an appropriate crown-ether. Further, the neutral metal(i) complexes are used to introduce NBu4+ as an organic cation in the case of cobalt and iron. The impact of the intramolecular cation complexation was further demonstrated upon reaction with diphenyl acetylene which leads to bond formation processes and redox disproportionation instead of η2-alkyne complex formation.

4.
Chemistry ; 27(15): 4932-4938, 2021 Mar 12.
Article in English | MEDLINE | ID: mdl-33453071

ABSTRACT

Herein, we disclose the facile reduction of pyridine (and its derivatives) by linear 3d-metal(I) silylamides (M=Cr-Co). This reaction resulted in intermolecular C-C coupling to give dinuclear metal(II) complexes bearing a bridging 4,4'-dihydrobipyridyl ligand. For iron, we demonstrated that the C-C coupling is reversible in solution, either directly or by reaction with substrates, via a presumed monomeric metal(II) complex bearing a pyridyl radical anion. In the course of this investigation, we also observed that the dinuclear metal(II) complex incorporating iron facilitated the isomerisation of 1,4-cyclohexadiene to 1,3-cyclohexadiene as well as equimolar amounts of benzene and cyclohexene. Furthermore, we synthesised and structurally characterised a non-3d-metal-bound pyridyl radical anion. The reactions of the silylamides with perfluoropyridine led to C-F bond cleavage with the formation of metal(II) fluoride complexes of manganese, iron and cobalt along with the homocoupling or reductive degradation of the substrate. In the case of cobalt, the use of lesser fluorinated pyridines led to C-F bond cleavage but no homocoupling. Overall, in this paper we provide insights into the multifaceted behaviour of simple (fluoro)pyridines in the presence of moderately to highly reducing metal complexes.

5.
Sci Rep ; 10(1): 22072, 2020 12 16.
Article in English | MEDLINE | ID: mdl-33328540

ABSTRACT

Current diagnostic tests for tuberculosis (TB) are not able to predict reactivation disease progression from latent TB infection (LTBI). The main barrier to predicting reactivation disease is the lack of our understanding of host biomarkers associated with progression from latent infection to active disease. Here, we applied an immune-based gene expression profile by NanoString platform to identify whole blood markers that can distinguish active TB from other lung diseases (OPD), and that could be further evaluated as a reactivation TB predictor. Among 23 candidate genes that differentiated patients with active TB from those with OPD, nine genes (CD274, CEACAM1, CR1, FCGR1A/B, IFITM1, IRAK3, LILRA6, MAPK14, PDCD1LG2) demonstrated sensitivity and specificity of 100%. Seven genes (C1QB, C2, CCR2, CCRL2, LILRB4, MAPK14, MSR1) distinguished TB from LTBI with sensitivity and specificity between 82 and 100%. This study identified single gene candidates that distinguished TB from OPD and LTBI with high sensitivity and specificity (both > 82%), which may be further evaluated as diagnostic for disease and as predictive markers for reactivation TB.


Subject(s)
Gene Expression Regulation , Latent Tuberculosis , Mycobacterium tuberculosis/metabolism , RNA, Messenger/blood , Tuberculosis, Pulmonary , Adolescent , Adult , Female , Humans , Latent Tuberculosis/blood , Latent Tuberculosis/diagnosis , Male , Middle Aged , Tuberculosis, Pulmonary/blood , Tuberculosis, Pulmonary/diagnosis
6.
Front Immunol ; 11: 1848, 2020.
Article in English | MEDLINE | ID: mdl-32973761

ABSTRACT

The cell wall of wild-type (WT) Mycobacterium tuberculosis (Mtb), an etiologic agent of tuberculosis (TB) and a Mtb strain disrupted in a 13-gene operon mce1 (Δmce1) varies by more than 400 lipid species. Here, we examined Mtb lipid-induced response in murine macrophage, as well as in human T-cell subpopulations in order to gain an insight into how changes in cell wall lipid composition may modulate host immune response. Relative to WT Mtb cell wall lipids, the non-polar lipid extracts from Δmce1 enhanced the mRNA expression of lipid-sense nuclear receptors TR4 and PPAR-γ and dampened the macrophage expression of genes encoding TNF-α, IL-6, and IL-1ß. Relative to untreated control, WT lipid-pre-stimulated macrophages from healthy individuals induced a higher level of CD4-CD8- double negative T-cells (DN T-cells) producing TNF-α. Conversely, compared to WT, stimulation with Δmce1 lipids induced higher mean fluorescence intensity (MFI) in IL-10-producing DN T cells. Mononuclear cells from TB patients stimulated with WT Mtb lipids induced an increased production of TNF-α by CD8+ lymphocytes. Taken together, these observations suggest that changes in mce1 operon expression during a course of infection may serve as a strategy by Mtb to evade the host pro-inflammatory responses.


Subject(s)
Bacterial Proteins/genetics , Cell Wall/immunology , Lymphocyte Activation/immunology , Macrophage Activation/immunology , Mycobacterium tuberculosis/immunology , Tuberculosis/immunology , Adolescent , Adult , Animals , Cell Wall/chemistry , Female , Humans , Lipids/immunology , Macrophages/immunology , Male , Mice , Middle Aged , Operon , RAW 264.7 Cells , T-Lymphocytes/immunology , Young Adult
7.
Inorg Chem ; 59(14): 9521-9537, 2020 Jul 20.
Article in English | MEDLINE | ID: mdl-32603097

ABSTRACT

This report describes a series of rare low-coordinate 3d transition metal alkyne complexes resulting from the reaction of quasi-linear metal(I) silylamides, K{18c6}[MX2] (18c6 = 18-crown-6; X = -N(SiMe3)2), -N(Dipp)SiMe3; Dipp = 2,6-diisopropylphenyl), of chromium, manganese, iron, and cobalt with aliphatic and aromatic alkynes. We evaluated the interaction of alkynes with quasi-linear metal complexes in dependence of the metal and the alkyne substituents. Whereas only a weak and reversible alkyne coordination is observed for cobalt, the formation of side-on alkyne complexes of the type [M(L2)(η2-RCCR)]- takes place readily for iron. In the case of manganese, we report the first example of a low-coordinate manganese alkyne complexes and, depending on the substrate, unique examples for the manganese mediated reduction of the alkyne to their dianions or even alkyne trimerization. For chromium, alkyne coordination or reduction to the respective alkyne dianions is also observed. Computational analysis of the series of [M(N(SiMe3)2)2(η2-PhCCPh)]- complexes (Cr-Co) using DFT and CASSCF methods reveals a partial reduction of the alkyne by the metal. This leads to the description of the electronic situation of all these complexes as formal metal(II) bound alkynyl radical anions. In the case of chromium, indications for further contributions of a metal(III) cyclopropene resonance structure were found. The computational analysis rationalizes the facile reduction to bis-metalated alkene dianions due to the radical anion character of the alkyne π-complexes.

8.
Chem Commun (Camb) ; 56(15): 2268-2271, 2020 Feb 20.
Article in English | MEDLINE | ID: mdl-31984392

ABSTRACT

Chelating phosphines are widely used as robust and reliable ligands in catalysis. We show that the anionic iron(i) complex [FeI(N(SiMe3)2)2]- is able to selectively cleave a P-aryl bond of 1,2-bis(diphenylphosphino)benzene. Furthermore, the related cis-1,2-bis(diphenylphosphino)-ethylene (dppee) binds not to the P donors but to the ethylene unit, and is (catalytically) transformed to the trans-isomer.

SELECTION OF CITATIONS
SEARCH DETAIL
...