Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Opt Express ; 27(16): 22209-22225, 2019 Aug 05.
Article in English | MEDLINE | ID: mdl-31510518

ABSTRACT

Thin film growth of ${\textrm{TiO}}_2$TiO2 by physical vapor deposition processes is simulated in the Virtual Coater framework resulting in virtual thin films. The simulations are carried out for artificial, simplified deposition conditions as well as for conditions representing a real coating process. The study focuses on porous films which exhibit a significant anisotropy regarding the atomistic structure and consequently, to the index of refraction. A method how to determine the effective anisotropic index of refraction of virtual thin films by the effective medium theory is developed. The simulation applies both, classical molecular dynamics as well as kinetic Monte Carlo calculations, and finally the properties of the virtual films are compared to experimentally grown films especially analyzing the birefringence in the evaluation.

2.
Opt Express ; 23(11): A657-70, 2015 Jun 01.
Article in English | MEDLINE | ID: mdl-26072890

ABSTRACT

Fabrication of competitive solar cells based on nano-textured ultrathin silicon technology is challenging nowadays. Attention is paid to the optimization of this type of texture, with a lot of simulation and experimental results published in the last few years. While previous studies discussed mainly the local features of the surface texture, we highlight here the importance of their filling fraction. In this work, we focus on a fair comparison between a technologically realizable correlated disorder pattern of inverted nano-pyramids on an ultrathin crystalline-silicon layer, and its periodically patterned counterpart. A fair comparison is made possible by defining an equivalent periodic structure for each hole filling fraction. Moreover, in order to be as realistic as possible, we consider patterns that could be fabricated by standard patterning techniques: hole-mask colloidal lithography, nanoimprint lithography and wet chemical etching. Based on numerical simulations, we show that inverted nano-pyramid patterns with correlated disorder provide typically greater efficiency than their periodic counterparts. However, the hole filling fraction of the etched pattern plays a crucial role and may limit the benefits of the correlated disorder due to experimental restrictions on pattern fabrication.

3.
Phys Rev Lett ; 114(2): 024501, 2015 Jan 16.
Article in English | MEDLINE | ID: mdl-25635548

ABSTRACT

Nanostructures are commonly used for developing superhydrophobic surfaces. However, available wetting theoretical models ignore the effect of vacuum photon-mode alteration on van der Waals forces and thus on hydrophobicity. Using first-principles calculations, we show that superhydrophibicity of nanostructured surfaces is dramatically enhanced by vacuum photon-mode tuning. As a case study, wetting contact angles of a water droplet above a polyethylene nanostructured surface are obtained from the interaction potential energy calculated as a function of the droplet-surface separation distance. This new approach could pave the way for the design of novel superhydrophobic coatings.

4.
J Opt Soc Am A Opt Image Sci Vis ; 28(5): 868-78, 2011 May 01.
Article in English | MEDLINE | ID: mdl-21532699

ABSTRACT

We present the study of a spectral-domain near-field-to-far-field (NFTFF) transformation, taking into account an interface in the vicinity of a particle. This technique is associated with a three-dimensional finite-difference time-domain (FDTD) model, which solves the Maxwell equations in the time domain. Moreover, material properties are considered with the use of dispersion models. First, particular attention is paid to the description of the modeling, especially concerning the NFTFF transformation using the dyadic Green tensors. Second, several simulation cases are considered to evaluate the ability of the developed technique to model the scattering by different kinds of "particles/interface" configurations and for various illuminating waves. Then validation test cases are used in order to assess the model accuracy through comparisons with T-matrix simulations. Finally, perspectives to this work and its application to near-field detection devices are discussed.

SELECTION OF CITATIONS
SEARCH DETAIL
...