Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Nanosci Nanotechnol ; 9(7): 4170-9, 2009 Jul.
Article in English | MEDLINE | ID: mdl-19916425

ABSTRACT

Carbon nanofibers were obtained by thermo-catalytic decomposition of methane at 700 degrees C over Ni and Ni-Cu catalysts prepared by different methods (co-precipitation, impregnation and fusion) and using either Al or Mg as textural promoter. Characterization of the carbon thus obtained was performed by N2 adsorption isotherms (BET surface area), temperature programmed desorption (TPD), temperature programmed oxidation (TPO), X-ray diffraction, Raman spectrometry, and electron microscopy SEM and TEM. The carbon obtained possesses high crystallinity and poor surface chemistry. The crystallinity is enhanced when using Mg as textural promoter and in the presence of copper. SEM and TEM examinations show that the fibers have fishbone structure and they grow generally from one nickel particle (tip growing) although there are some bidirectional growing. Copper-doping lead to the formation of thicker filaments and promotes the formation of bamboo-like structures. Catalyst particles higher than 100 nm do not promote the formation of nanofibers and the carbon deposits as uniform coatings.

2.
Phys Chem Chem Phys ; 9(30): 4018-25, 2007 Aug 14.
Article in English | MEDLINE | ID: mdl-17646891

ABSTRACT

The microstructure and electronic structure of environmentally relevant carbons such as Euro IV heavy duty diesel engine soot, soot from a black smoking diesel engine, spark discharge soot as model aerosol, commercial furnace soot and lamp black are investigated by transmission electron microscopy, electron energy-loss spectroscopy and X-ray photoelectron spectroscopy. The materials exhibit differences in the predominant bonding, which influences microstructure as well as surface functionalization. These chemical and physical properties depend on the formation history of the investigated carbonaceous materials. In this work, a correlation of the microstructure of the samples to the predominant bonding and incorporation of oxygen into the carbons is obtained. It is shown that a high amount of defects and the deviation of the carbons from a perfect graphitic structure results in a increased incorporation of oxygen and hydrogen. A correlation between the length and curvature of graphene layers with the bonding state of carbon atoms and incorporation of oxygen and hydrogen is established.


Subject(s)
Soot/chemistry , Vehicle Emissions , Air Pollutants/chemistry , Microscopy, Electron, Transmission/methods , Oxygen/chemistry , Spectrometry, X-Ray Emission/methods , Spectroscopy, Electron Energy-Loss/methods
3.
Environ Sci Technol ; 40(4): 1231-6, 2006 Feb 15.
Article in English | MEDLINE | ID: mdl-16572780

ABSTRACT

Soot particulate collected from a Euro III heavy duty diesel engine run under black smoke conditions was investigated using thermogravimetry, transmission electron microscopy, electron energy loss spectroscopy, and X-ray photoelectron spectroscopy. The characterization results are compared with those of commercial carbon black. The onset temperature toward oxidation of the diesel engine soot in 5% O2 is 150 degrees C lower than that for carbon black. The burn out temperature for the diesel engine soot is 60 degrees C lower than that of the carbon black. The soot primary particles exhibit a core-shell structure. The shell of the soot particles consists of homogeneously stacked basic structure units. The commercial carbon lamp black is more graphitized than the diesel engine soot, whereas the diesel engine soot contains more carbon in aromatic nature than the carbon black and is highly surface-functionalized. Our findings reveal that technical carbon black is not a suitable model for the chemistry of the diesel engine soot.


Subject(s)
Air Pollutants/chemistry , Carbon/chemistry , Vehicle Emissions/analysis , Dust , Microscopy, Electron, Transmission , Oxidation-Reduction , Particle Size , Smoke , Thermogravimetry
SELECTION OF CITATIONS
SEARCH DETAIL
...