Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Int J Mol Sci ; 25(7)2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38612934

ABSTRACT

We establish a general kinetic scheme for the energy transfer and radical-pair dynamics in photosystem I (PSI) of Chlamydomonas reinhardtii, Synechocystis PCC6803, Thermosynechococcus elongatus and Spirulina platensis grown under white-light conditions. With the help of simultaneous target analysis of transient-absorption data sets measured with two selective excitations, we resolved the spectral and kinetic properties of the different species present in PSI. WL-PSI can be described as a Bulk Chl a in equilibrium with a higher-energy Chl a, one or two Red Chl a and a reaction-center compartment (WL-RC). Three radical pairs (RPs) have been resolved with very similar properties in the four model organisms. The charge separation is virtually irreversible with a rate of ≈900 ns-1. The second rate, of RP1 → RP2, ranges from 70-90 ns-1 and the third rate, of RP2 → RP3, is ≈30 ns-1. Since RP1 and the Red Chl a are simultaneously present, resolving the RP1 properties is challenging. In Chlamydomonas reinhardtii, the excited WL-RC and Bulk Chl a compartments equilibrate with a lifetime of ≈0.28 ps, whereas the Red and the Bulk Chl a compartments equilibrate with a lifetime of ≈2.65 ps. We present a description of the thermodynamic properties of the model organisms at room temperature.


Subject(s)
Chlamydomonas reinhardtii , Photosystem I Protein Complex , Chlorophyll A , Energy Transfer , Kinetics
2.
iScience ; 26(9): 107650, 2023 Sep 15.
Article in English | MEDLINE | ID: mdl-37680463

ABSTRACT

We establish a general kinetic scheme for energy transfer and trapping in the photosystem I (PSI) of cyanobacteria grown under white light (WL) or far-red light (FRL) conditions. With the help of simultaneous target analysis of all emission and transient absorption datasets measured in five cyanobacterial strains, we resolved the spectral and kinetic properties of the different species present in PSI. WL-PSI can be described by Bulk Chl a, two Red Chl a, and a reaction center compartment (WL-RC). The FRL-PSI contains two additional Chl f compartments. The lowest excited state of the FRL-RC is downshifted by ≈ 29 nm. The rate of charge separation drops from ≈900 ns-1 in WL-RC to ≈300 ns-1 in FRL-RC. The delayed trapping in the FRL-PSI (≈130 ps) is explained by uphill energy transfer from the Chl f compartments with Gibbs free energies of ≈kBT below that of the FRL-RC.

3.
J Phys Chem A ; 115(16): 3698-712, 2011 Apr 28.
Article in English | MEDLINE | ID: mdl-20738109

ABSTRACT

Femtosecond transient absorption spectroscopy has been applied to the isolated carotenoid ß-carotene under a large variety of experimental conditions regarding solvent, temperature, excitation wavelength, and intensity to study the excited state relaxation dynamics in order to elucidate the origin of the so-called "dark S* state", which has been discussed very controversially in the literature. The results are analyzed in terms of lifetime density maps, and various kinetic models are tested on the data. The sample purification was found to be critical. The appearance of a component with a lifetime longer than that of the relaxed S(1) state (i.e., τ > 10 ps), which has been associated previously with the S* (or S(‡)) state is due to the presence of an impurity. For pure samples, four lifetimes are typically observed (all ≤10 ps at room temperature). Consideration of the large body of experimental data leads us to exclude relaxation schemes implying a separate "dark S* state" in ß-carotene formed in parallel to the normal S(2) → S(1) relaxation scheme. Vibrational cooling in the S(1) state can explain fully all the features of the transient spectra on the picosecond time scale within a S(2) → S(1v) → S(1v') → S(1) → S(0) relaxation scheme without invoking any additional electronic or distinctly different conformational states. Thus, we exclude assignments of the previously reported "S* state" signals in ß-carotene (i) to require the postulate of a separate electronic state, (ii) to require the postulate of a large conformational change and/or a partial cis configuration formed in the relaxation pathway, or (iii) to require a vibrationally excited ground state (GS) species. High intensity excitation leads in part to a two-photon excitation to the S(2N) state which upon relaxation gives rise to a different vibrational excitation pattern in the initially created hot S(1) state(s). The spectral changes in the S(1v) state observed upon both short wave excitation as well as high intensity excitation can be explained well by such a modified vibrational excitation pattern. In contrast, the variations in the difference spectra of the partially (S(1v')) and fully vibrationally relaxed S(1) states (S(1)) are minor. The data do not provide any evidence that would require one to postulate the existence of a separate "S* state".


Subject(s)
Quantum Theory , beta Carotene/chemistry , Molecular Structure , Spectrophotometry, Ultraviolet , Time Factors
4.
Biochim Biophys Acta ; 1797(9): 1606-16, 2010 Sep.
Article in English | MEDLINE | ID: mdl-20488160

ABSTRACT

The energy equilibration and transfer processes in the isolated core antenna complexes CP43 and CP47 of photosystem II have been studied by steady-state and ultrafast (femto- to nanosecond) time-resolved spectroscopy at room temperature. The annihilation-free femtosecond absorption data can be described by surprisingly simple sequential kinetic models, in which the excitation energy transfer between blue and red states in both antenna complexes is dominated by sub-picosecond processes and is completed in less than 2ps. The slowest energy transfer steps with lifetimes in the range of 1-2ps are assigned to transfer steps between the chlorophyll layers located on the stromal and lumenal sides. We conclude that these ultrafast intra-antenna energy transfer steps do not represent a bottleneck in the rate of the primary processes in intact photosystem II. Since the experimental energy equilibration rates are up to a factor of 3-5 higher than concluded previously, our results challenge the conclusions drawn from theoretical modeling.


Subject(s)
Energy Transfer , Light-Harvesting Protein Complexes/chemistry , Photosystem II Protein Complex/chemistry , Zea mays/enzymology , Fluorescence , Kinetics
5.
Appl Magn Reson ; 38(1): 105-116, 2010 Mar.
Article in English | MEDLINE | ID: mdl-20208980

ABSTRACT

Photochemically induced dynamic nuclear polarization magic-angle spinning nuclear magnetic resonance (photo-CIDNP MAS NMR) allows for the investigation of the electronic structure of the photochemical machinery of photosynthetic reaction centers (RCs) at atomic resolution. For such experiments, either continuous radiation from white xenon lamps or green laser pulses are applied to optically dense samples. In order to explore their optical properties, optically thick samples of isolated and quinone-removed RCs of the purple bacteria of Rhodobacter sphaeroides wild type are studied by nanosecond laser-flash (13)C photo-CIDNP MAS NMR using excitation wavelengths between 720 and 940 nm. Action spectra of both the transient nuclear polarization as well as the nuclear hyperpolarization, remaining in the electronic ground state at the end of the photocycle, are obtained. It is shown that the signal intensity is limited by the amount of accessible RCs and that the different mechanisms of the photo-CIDNP production rely on the same photophysical origin, which is the photocycle induced by one single photon.

6.
Proc Natl Acad Sci U S A ; 107(9): 4123-8, 2010 Mar 02.
Article in English | MEDLINE | ID: mdl-20142514

ABSTRACT

Photosystem I (PSI) is a large pigment-protein complex that unites a reaction center (RC) at the core with approximately 100 core antenna chlorophylls surrounding it. The RC is composed of two cofactor branches related by a pseudo-C2 symmetry axis. The ultimate electron donor, P(700) (a pair of chlorophylls), and the tertiary acceptor, F(X) (a Fe(4)S(4) cluster), are both located on this axis, while each of the two branches is made up of a pair of chlorophylls (ec2 and ec3) and a phylloquinone (PhQ). Based on the observed biphasic reduction of F(X), it has been suggested that both branches in PSI are competent for electron transfer (ET), but the nature and rate of the initial electron transfer steps have not been established. We report an ultrafast transient absorption study of Chlamydomonas reinhardtii mutants in which specific amino acids donating H-bonds to the 13(1)-keto oxygen of either ec3(A) (PsaA-Tyr696) or ec3(B) (PsaB-Tyr676) are converted to Phe, thus breaking the H-bond to a specific ec3 cofactor. We find that the rate of primary charge separation (CS) is lowered in both mutants, providing direct evidence that the primary ET event can be initiated independently in each branch. Furthermore, the data provide further support for the previously published model in which the initial CS event occurs within an ec2/ec3 pair, generating a primary ec2(+)ec3(-) radical pair, followed by rapid reduction by P(700) in the second ET step. A unique kinetic modeling approach allows estimation of the individual ET rates within the two cofactor branches.


Subject(s)
Photosystem I Protein Complex/chemistry , Electron Transport , Kinetics , Models, Molecular , Spectrum Analysis/methods
7.
Chemphyschem ; 11(6): 1289-96, 2010 Apr 26.
Article in English | MEDLINE | ID: mdl-20127930

ABSTRACT

The energy dissipation mechanism in oligomers of the major light-harvesting complex II (LHC II) from Arabidopsis thaliana mutants npq1 and npq2, zeaxanthin-deficient and zeaxanthin-enriched, respectively, has been studied by femtosecond transient absorption. The kinetics obtained at different excitation intensities are compared and the implications of singlet-singlet annihilation are discussed. Under conditions where annihilation is absent, the two types of LHC II oligomers show distributive biexponential (bimodal) kinetics with lifetimes of approximately 5-20 ps and approximately 200-400 ps having transient spectra typical for chlorophyll excited states. The data can be described kinetically by a two-state compartment model involving only chlorophyll excited states. Evidence is provided that neither carotenoid excited nor carotenoid radical states are involved in the quenching mechanism at variance with earlier proposals. We propose instead that a chlorophyll-chlorophyll charge-transfer state is formed in LHC II oligomers which is an intermediate in the quenching process. The relevance to non-photochemical quenching in vivo is discussed.


Subject(s)
Carotenoids/chemistry , Energy Transfer , Light-Harvesting Protein Complexes/chemistry , Arabidopsis/enzymology , Chlorophyll/chemistry , Kinetics , Models, Biological
8.
Phys Rev Lett ; 103(10): 108302, 2009 Sep 04.
Article in English | MEDLINE | ID: mdl-19792347

ABSTRACT

We investigate femtosecond transient absorption dynamics of lutein and beta-carotene. Strong oscillations up to about 400 fs are observed, depending on excitation or detection wavelength and solvent. We propose electronic quantum beats as the origin of these oscillations. They provide direct proof for strong coupling of the 1B(u)(+) with another electronic "dark" state predicted by quantum chemical calculations to be the 1B(u)(-) state resulting in a crossing within a dynamic relaxation model. The overall dynamics can be described well by an optical Bloch equation approach.


Subject(s)
Lutein/chemistry , Models, Chemical , beta Carotene/chemistry , Photochemical Processes , Quantum Theory , Thermodynamics
9.
Photochem Photobiol Sci ; 8(2): 270-8, 2009 Feb.
Article in English | MEDLINE | ID: mdl-19247521

ABSTRACT

For the natural carotenoid 3,3'-dihydroxyisorenieratene (DHIR) and two synthetic derivatives, 3,3'-dihydroxy-16,17,18,16',17',18'-hexanor-Phi,Phi-carotene (DHHC) and Phi,Phi-carotene-3,3'-dione (DHIRQ, isorenieratene-3,3'-dione), steady state absorption experiments and combined density functional and multi-reference configuration interaction calculations were carried out. In addition, femtosecond transient absorption spectra were recorded for DHIR. Due to their marked out-of-plane distortion in DHIR, the phenolic end groups participate only partially in the conjugation system. In the low-energy regime its absorption spectrum with the maximum at 21 700 cm(-1) in acetone solution therefore closely resembles that of beta-carotene, the same as for the T1 energy. Further similarities are also found for the decay kinetics of the optically bright 1(1)Bu+ state of these compounds. After femtosecond excitation, the 1(1)Bu+ population of DHIR decays with a lifetime of 110 fs to the vibrationally hot 2(1)Ag-,v state which in turn relaxes to the 2(1)Ag-,0 state within 500 fs. Decay of the 2(1)Ag-,0 state to the S0 state occurs at a time scale of 12 ps. Demethylation of the phenolic end groups alleviates the steric repulsion by the polyene chain and causes a small red shift (1000 cm(-1)) comparing the absorption spectra of DHHC and DHIR. Oxidation of DHIR leads to drastic changes of the electronic and geometric properties. The quinoid end groups of DHIRQ are fully integrated into the conjugation system, shifting the absorption maximum to 17 800 cm(-1) in acetone solution which thus takes a blue color. The results of the quantum chemical calculations indicate that, in addition to the 2(1)Ag-(S1) state, two dark internal charge-transfer singlet states and the 1(1)Bu- state might be located energetically below the optically bright 1(1)Bu+ (S5) state of DHIRQ.


Subject(s)
Carotenoids/chemistry , Hydroquinones/chemistry , Phenols/chemistry , Acetone , Hordeum/chemistry , Hordeum/genetics , Models, Molecular , Molecular Conformation , Solutions , Spectrophotometry
10.
Biophys J ; 94(11): 4370-82, 2008 Jun.
Article in English | MEDLINE | ID: mdl-18199671

ABSTRACT

The photoprocesses of native (phyA of oat), and of C-terminally truncated recombinant phytochromes, assembled instead of the native phytochromobilin with phycocyanobilin (PCB-65 kDa-phy) and iso-phycocyanobilin (iso-PCB-65 kDa-phy) chromophores, have been studied by femtosecond transient absorption spectroscopy in both their red absorbing phytochrome (P(r)) and far-red absorbing phytochrome (P(fr)) forms. Native P(r) phytochrome shows an excitation wavelength dependence of the kinetics with three main picosecond components. The formation kinetics of the first ground-state intermediate I(700), absorbing at approximately 690 nm, is mainly described by 28 ps or 40 ps components in native and PCB phytochrome, respectively, whereas additional approximately 15 and 50 ps components describe conformational dynamics and equilibria among different local minima on the excited-state hypersurface. No significant amount of I(700) formation can be observed on our timescale for iso-PCB phytochrome. We suggest that iso-PCB-65 kDa-phy either interacts with the protein differently leading to a more twisted and/or less protonated configuration, or undergoes P(r) to P(fr) isomerization primarily via a different configurational pathway, largely circumventing I(700) as an intermediate. The isomerization process is accompanied by strong coherent oscillations due to wavepacket motion on the excited-state surface for both phytochrome forms. The femto- to (sub-)nanosecond kinetics of the P(fr) forms is again quite similar for the native and the PCB phytochromes. After an ultrafast excited-state relaxation within approximately 150 fs, the chromophores return to the first ground-state intermediate in 400-800 fs followed by two additional ground-state intermediates which are formed with 2-3 ps and approximately 400 ps lifetimes. We call the first ground-state intermediate in native phytochrome I(fr 750), due to its pronounced absorption at that wavelength. The other intermediates are termed I(fr 675) and pseudo-P(r). The absorption spectrum of the latter already closely resembles the absorption of the P(r) chromophore. PCB-65 kDa-phy shows a very similar kinetics, although many of the detailed spectral features in the transients seen in native phy are blurred, presumably due to wider inhomogeneous distribution of the chromophore conformation. Iso-PCB-65 kDa-phy shows similar features to the PCB-65 kDa-phy, with some additional blue-shift of the transient spectra of approximately 10 nm. The sub-200 fs component is, however, absent, and the picosecond lifetimes are somewhat longer than in 124 kDa phytochrome or in PCB-65 kDa-phy. We interpret the data within the framework of two- and three-dimensional potential energy surface diagrams for the photoisomerization processes and the ground-state intermediates involved in the two photoconversions.


Subject(s)
Models, Biological , Models, Chemical , Photosynthetic Reaction Center Complex Proteins/chemistry , Phytochrome/chemistry , Plant Proteins/chemistry , Computer Simulation , Kinetics , Light , Photosynthetic Reaction Center Complex Proteins/radiation effects , Phytochrome/radiation effects , Plant Proteins/radiation effects
11.
J Am Chem Soc ; 128(20): 6542-3, 2006 May 24.
Article in English | MEDLINE | ID: mdl-16704238

ABSTRACT

An artificial light-harvesting rod aggregate based on zinc chlorin and covalently linked naphthalene bisimide chromophore has been realized by self-assembly. Efficient energy transfer (phiET >/= 0.99) takes place upon excitation at 620 nm from peripheral naphthalene bisimides to the zinc chlorin rod aggregate backbone. The appended naphthalene bisimide dyes improve the total LH efficiency of the rod aggregate by 26%. Thus, the present bioinspired antenna system is promising for application in nanodevices for the effective utilization of solar energy by bridging the "green gap".


Subject(s)
Light-Harvesting Protein Complexes/chemistry , Porphyrins/chemistry , Energy Transfer , Microscopy, Atomic Force , Models, Biological , Spectrometry, Fluorescence
12.
Biophys J ; 90(2): 552-65, 2006 Jan 15.
Article in English | MEDLINE | ID: mdl-16258055

ABSTRACT

The energy transfer and charge separation kinetics in several core Photosystem I particles of Chlamydomonas reinhardtii with point mutations around the PA and PB reaction center chlorophylls (Chls) have been studied using ultrafast transient absorption spectroscopy in the femtosecond to nanosecond time range to characterize the influence on the early electron transfer processes. The data have been analyzed in terms of kinetic compartment models. The adequate description of the transient absorption kinetics requires three different radical pairs in the time range up to approximately 100 ps. Also a charge recombination process from the first radical pair back to the excited state is present in all the mutants, as already shown previously for the wild-type (Müller, M. G., J. Niklas, W. Lubitz, and A. R. Holzwarth. 2003. Biophys. J. 85:3899-3922; and Holzwarth, A. R., M. G. Müller, J. Niklas, and W. Lubitz. 2005. J. Phys. Chem. B. 109:5903-59115). In all mutants, the primary charge separation occurs with the same effective rate constant within the error limits as in the wild-type (>>350 ns(-1)), which implies an intrinsic rate constant of charge separation of <1 ps(-1). The rate constant of the secondary electron transfer process is slowed down by a factor of approximately 2 in the mutant B-H656C, which lacks the ligand to the central metal of Chl PB. For the mutant A-T739V, which breaks the hydrogen bond to the keto carbonyl of Chl PA, only a slight slowing down of the secondary electron transfer is observed. Finally for mutant A-W679A, which has the Trp near the PA Chl replaced, either no pronounced effect or, at best, a slight increase on the secondary electron transfer rate constants is observed. The effective charge recombination rate constant is modified in all mutants to some extent, with the strongest effect observed in mutant B-H656C. Our data strongly suggest that the Chls of the PA and PB pair, constituting what is traditionally called the "primary electron donor P700", are not oxidized in the first electron transfer process, but rather only in the secondary electron transfer step. We thus propose a new electron transfer mechanism for Photosystem I where the accessory Chl(s) function as the primary electron donor(s) and the A0 Chl(s) are the primary electron acceptor(s). This new mechanism also resolves in a straightforward manner the difficulty with the previous mechanism, where an electron would have to overcome a distance of approximately 14 A in <1 ps in a single step. If interpreted within a scheme of single-sided electron transfer, our data suggest that the B-branch is the active branch, although parallel A-branch activity cannot be excluded. All the mutations do affect to a varying extent the energy difference between the reaction center excited state RC* and the first radical pair and thus affect the rate constant of charge recombination. It is interesting to note that the new mechanism proposed is in fact analogous to the electron transfer mechanism in Photosystem II, where the accessory Chl also plays the role of the primary electron donor, rather than the special Chl pair P680 (Prokhorenko, V. and A. R. Holzwarth. 2000. J. Phys. Chem. B. 104:11563-11578).


Subject(s)
Chlamydomonas reinhardtii/metabolism , Chlorophyll/chemistry , Mutation , Photosystem I Protein Complex , Spectrophotometry/methods , Animals , Chlorophyll/genetics , Electrons , Free Radicals , Hydrogen Bonding , Kinetics , Ligands , Models, Chemical , Models, Molecular , Models, Statistical , Mutagenesis, Site-Directed , Oxidation-Reduction , Oxygen/metabolism , Plasmids/metabolism , Time Factors , Tryptophan/chemistry
13.
J Phys Chem B ; 109(12): 5903-11, 2005 Mar 31.
Article in English | MEDLINE | ID: mdl-16851643

ABSTRACT

The fluorescence kinetics of photosystem I core particles from Chlamydomonas reinhardtii have been measured with picosecond resolution in order to test a previous hypothesis suggesting a charge recombination mechanism for the early electron-transfer steps and the fluorescence kinetics (Müller et al. Biophys. J. 2003, 85, 3899-3922). Performing global target analyses for various kinetic models on the original fluorescence data confirms the "charge recombination" model as the only acceptable one of the models tested while all of the other models can be excluded. The analysis allowed a precise determination of (i) the effective charge separation rate constant from the equilibrated reaction center excited state (438 ns(-1)) confirming our previous assignment based on transient absorption data (Müller et al. Biophys. J. 2003, 85, 3899-3922), (ii) the effective charge recombination rate constant back to the excited state (52 ns(-1)), and (iii) the intrinsic secondary electron-transfer rate constant (80 ns(-1)). The average energy equilibration lifetime core antenna/RC is about 1 ps in the "charge recombination" model, in agreement with previous transient absorption data, vs the 18-20 ps energy transfer lifetime from antenna to RC within "transfer-to-the-trap-limited" models. The apparent charge separation lifetime in the recombination model is about three times faster than in the "transfer-to-the-trap-limited" model. We conclude that the charge separation kinetics is trap-limited in PS I cores devoid of red antenna states such as in C. reinhardtii.


Subject(s)
Chlamydomonas reinhardtii/metabolism , Models, Biological , Photosystem I Protein Complex/physiology , Animals , Oxidation-Reduction , Spectrometry, Fluorescence
14.
Biophys J ; 85(6): 3899-922, 2003 Dec.
Article in English | MEDLINE | ID: mdl-14645079

ABSTRACT

The energy transfer and charge separation kinetics in core Photosystem I (PSI) particles of Chlamydomonas reinhardtii has been studied using ultrafast transient absorption in the femtosecond-to-nanosecond time range. Although the energy transfer processes in the antenna are found to be generally in good agreement with previous interpretations, we present evidence that the interpretation of the energy trapping and electron transfer processes in terms of both kinetics and mechanisms has to be revised substantially as compared to current interpretations in the literature. We resolved for the first time i), the transient difference spectrum for the excited reaction center state, and ii), the formation and decay of the primary radical pair and its intermediate spectrum directly from measurements on open PSI reaction centers. It is shown that the dominant energy trapping lifetime due to charge separation is only 6-9 ps, i.e., by a factor of 3 shorter than assumed so far. The spectrum of the first radical pair shows the expected strong bleaching band at 680 nm which decays again in the next electron transfer step. We show furthermore that the early electron transfer processes up to approximately 100 ps are more complex than assumed so far. Several possibilities are discussed for the intermediate redox states and their sequence which involve oxidation of P700 in the first electron transfer step, as assumed so far, or only in the second electron transfer step, which would represent a fundamental change from the presently assumed mechanism. To explain the data we favor the inclusion of an additional redox state in the electron transfer scheme. Thus we distinguish three different redox intermediates on the timescale up to 100 ps. At this level no final conclusion as to the exact mechanism and the nature of the intermediates can be drawn, however. From comparison of our data with fluorescence kinetics in the literature we also propose a reversible first charge separation step which has been excluded so far for open PSI reaction centers. For the first time an ultrafast 150-fs equilibration process, occurring among exciton states in the reaction center proper, upon direct excitation of the reaction center at 700 nm, has been resolved. Taken together the data call for a fundamental revision of the present understanding of the energy trapping and early electron transfer kinetics in the PSI reaction center. Due to the fact that it shows the fastest trapping time observed so far of any intact PSI particle, the PSI core of C. reinhardtii seems to be best suited to further characterize the electron transfer steps and mechanisms in the reaction center of PSI.


Subject(s)
Chlamydomonas reinhardtii/metabolism , Photosystem I Protein Complex , Absorption , Animals , Biophysical Phenomena , Biophysics , Electrons , Kinetics , Models, Biological , Models, Statistical , Oxidation-Reduction , Oxygen/metabolism , Spectrophotometry , Time Factors
15.
Biophys J ; 84(4): 2508-16, 2003 Apr.
Article in English | MEDLINE | ID: mdl-12668459

ABSTRACT

The energy transfer processes between Chls b and Chls a have been studied in the minor antenna complex CP29 by femtosecond transient absorption spectroscopy. Two samples were analyzed: the native CP29, purified from higher plants, and the recombinant one, reconstituted in vitro with the full pigment complement. The measurements indicate that the transfer kinetics in the two samples are virtually identical, confirming that the reconstituted CP29 has the same spectroscopic properties as the native one. In particular, three lifetimes (150 fs, 1.2 ps, and 5-6 ps) were identified for Chl b-652 nm to Chl a energy transfer and at least one for Chl b-640 nm (600-800 fs). Considering that the complexes bind two Chls b per polypeptide, the observation of more than two lifetimes for the Chl b to Chl a energy transfer, in both samples, clearly indicates the presence of the so-called mixed Chl binding sites--sites which are not selective for Chl a or Chl b, but can accommodate either species. The kinetic components and spectra are assigned to specific Chl binding sites in the complex, which provides further information on the structural organization.


Subject(s)
Chlorophyll/chemistry , Chlorophyll/radiation effects , Energy Transfer , Chlorophyll A , Dose-Response Relationship, Radiation , Macromolecular Substances , Mutation , Protein Structure, Tertiary , Radiation Dosage , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/radiation effects , Zea mays/chemistry , Zea mays/genetics
16.
Biophys J ; 84(4): 2517-32, 2003 Apr.
Article in English | MEDLINE | ID: mdl-12668460

ABSTRACT

The energy transfer processes between carotenoids and Chls have been studied by femtosecond transient absorption in the CP29-WT complex, which contains only two carotenoids per polypeptide located in the L1 and L2 sites, and in the CP29-E166V mutant in which only the L1 site is occupied. The comparison of these two samples allowed us to discriminate between the energy transfer pathways from the two carotenoid binding sites and thus to obtain detailed information on the Chl organization in CP29 and to assign the acceptor chlorophylls. For both samples, the main transfer occurs from the S(2) state of the carotenoid. In the case of the L1 site the energy acceptor is the Chl a 680 nm (A2), whereas the Chl a 675 nm (A4-A5) and the Chl b 652 nm (B6) are the acceptors from the xanthophyll in the L2 site. These transfers occur with lifetimes of 80-130 fs. Two additional transfers are observed with 700-fs and 8- to 20-ps lifetimes. Both these transfers originate from the carotenoid S(1) states. The faster lifetime is due to energy transfer from a vibrationally unrelaxed S(1) state, whereas the 8- to 20-ps component is due to a transfer from the S(1,0) state of violaxanthin and/or neoxanthin located in site L2. A comparison between the carotenoid to Chl energy transfer pathways in CP29 and LHCII is presented and differences in the structural organization in the two complexes are discussed.


Subject(s)
Carotenoids/chemistry , Carotenoids/radiation effects , Chlorophyll/chemistry , Chlorophyll/radiation effects , Energy Transfer , Binding Sites , Dose-Response Relationship, Radiation , Macromolecular Substances , Mutation , Photosystem II Protein Complex/chemistry , Photosystem II Protein Complex/radiation effects , Protein Binding , Protein Structure, Tertiary , Radiation Dosage , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/radiation effects , Zea mays/chemistry , Zea mays/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...