Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Front Plant Sci ; 11: 253, 2020.
Article in English | MEDLINE | ID: mdl-32211008

ABSTRACT

Cross-kingdom RNA interference (RNAi) is a biological process allowing plants to transfer small regulatory RNAs to invading pathogens to trigger the silencing of target virulence genes. Transient assays in cereal powdery mildews suggest that silencing of one or two effectors could lead to near loss of virulence, but evidence from stable RNAi lines is lacking. We established transient host-induced gene silencing (HIGS) in wheat, and demonstrate that targeting an essential housekeeping gene in the wheat powdery mildew pathogen (Blumeria graminis f. sp. tritici) results in significant reduction of virulence at an early stage of infection. We generated stable transgenic RNAi wheat lines encoding a HIGS construct simultaneously silencing three B.g. tritici effectors including SvrPm3 a1/f1 , a virulence factor involved in the suppression of the Pm3 powdery mildew resistance gene. We show that all targeted effectors are effectively downregulated by HIGS, resulting in reduced fungal virulence on adult wheat plants. Our findings demonstrate that stable HIGS of effector genes can lead to quantitative gain of resistance without major pleiotropic effects in wheat.

2.
Nat Commun ; 10(1): 2292, 2019 05 23.
Article in English | MEDLINE | ID: mdl-31123263

ABSTRACT

The wheat Pm3 resistance gene against the powdery mildew pathogen occurs as an allelic series encoding functionally different immune receptors which induce resistance upon recognition of isolate-specific avirulence (AVR) effectors from the pathogen. Here, we describe the identification of five effector proteins from the mildew pathogens of wheat, rye, and the wild grass Dactylis glomerata, specifically recognized by the PM3B, PM3C and PM3D receptors. Together with the earlier identified AVRPM3A2/F2, the recognized AVRs of PM3B/C, (AVRPM3B2/C2), and PM3D (AVRPM3D3) belong to a large group of proteins with low sequence homology but predicted structural similarities. AvrPm3b2/c2 and AvrPm3d3 are conserved in all tested isolates of wheat and rye mildew, and non-host infection assays demonstrate that Pm3b, Pm3c, and Pm3d are also restricting the growth of rye mildew on wheat. Furthermore, divergent AVR homologues from non-adapted rye and Dactylis mildews are recognized by PM3B, PM3C, or PM3D, demonstrating their involvement in host specificity.


Subject(s)
Ascomycota/physiology , Fungal Proteins/immunology , Host Specificity , Plant Diseases/immunology , Plant Proteins/immunology , Triticum/immunology , Ascomycota/isolation & purification , Ascomycota/pathogenicity , Dactylis/microbiology , Disease Resistance/immunology , Edible Grain/immunology , Edible Grain/microbiology , Fungal Proteins/genetics , Fungal Proteins/metabolism , Genome, Fungal , Genome-Wide Association Study , NLR Proteins/immunology , NLR Proteins/metabolism , Plant Diseases/microbiology , Plant Proteins/metabolism , Plants, Genetically Modified , Secale/microbiology , Nicotiana/genetics , Nicotiana/microbiology , Triticum/microbiology
3.
New Phytol ; 218(2): 681-695, 2018 04.
Article in English | MEDLINE | ID: mdl-29453934

ABSTRACT

Recognition of the AVRPM3A2/F2 avirulence protein from powdery mildew by the wheat PM3A/F immune receptor induces a hypersensitive response after co-expression in Nicotiana benthamiana. The molecular determinants of this interaction and how they shape natural AvrPm3a2/f2 allelic diversity are unknown. We sequenced the AvrPm3a2/f2 gene in a worldwide collection of 272 mildew isolates. Using the natural polymorphisms of AvrPm3a2/f2 as well as sequence information from related gene family members, we tested 85 single-residue-altered AVRPM3A2/F2 variants with PM3A, PM3F and PM3FL456P/Y458H (modified for improved signaling) in Nicotiana benthamiana for effects on recognition. An intact AvrPm3a2/f2 gene was found in all analyzed isolates and the protein variant recognized by PM3A/F occurred globally at high frequencies. Single-residue alterations in AVRPM3A2/F2 mostly disrupted, but occasionally enhanced, the recognition response by PM3A, PM3F and PM3FL456P/Y458H . Residues enhancing hypersensitive responses constituted a protein domain separate from both naturally occurring polymorphisms and positively selected residues of the gene family. These results demonstrate the utility of using gene family sequence diversity to screen residues for their role in recognition. This approach identified a putative interaction surface in AVRPM3A2/F2 not polymorphic in natural alleles. We conclude that molecular mechanisms besides recognition drive AvrPm3a2/f2 diversification.


Subject(s)
Ascomycota/pathogenicity , Fungal Proteins/chemistry , Fungal Proteins/metabolism , Plant Diseases/microbiology , Receptors, Immunologic/metabolism , Triticum/microbiology , Amino Acid Motifs , Amino Acid Sequence , Ascomycota/genetics , Ascomycota/isolation & purification , Conserved Sequence , Fungal Proteins/genetics , Gene Expression Regulation, Fungal , Geography , Mutation/genetics , Phenotype , Plant Proteins/metabolism , Polymorphism, Genetic , Protein Domains , Structure-Activity Relationship , Virulence
SELECTION OF CITATIONS
SEARCH DETAIL
...