Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Transfusion ; 2020 Dec 17.
Article in English | MEDLINE | ID: mdl-33349943

ABSTRACT

BACKGROUND: Conditions during blood product storage and transportation should maintain quality. The aim of this in vitro study was to investigate the effect of interruption of agitation, temporary cooling (TC), and pneumatic tube system transportation (PTST) on the aggregation ability (AA) and mitochondrial function (MF) of platelet concentrates (PC). STUDY DESIGN AND METHODS: A PC was divided equally into four subunits and then allocated to four test groups. The control group (I) was stored as recommended (continuous agitation, 22 ± 2°C) for 4 days. The test groups were stored without agitation (II), stored as recommended, albeit 4°C for 60 minutes on day (d)2 (III) and PTST (IV). Aggregometry was measured using Multiplate (RocheAG; ADPtest, ASPItest, TRAPtest, COLtest) and MF using Oxygraph-2k (Oroboros Instruments). The basal and maximum mitochondrial respiratory rate (MMRR) were determined. AA and MF were measured daily in I and II and AA in III and IV on d2 after TC/PTST. Statistical analysis was performed using tests for matched observations. RESULTS: Eleven PCs were used. TRAP-6 induced AA was significantly lower in II when compared to I on d4 (P = 0.015*). In III the ASPItest was significantly lower (P = 0.032*). IV showed no significant differences. The basal and MMRR were significantly reduced over 4 days in I and II (for both rates in both groups: P = <0.0001*). No significant differences occurred on d4 (P = 0.495). CONCLUSION: Our results indicate that ex vivo AA and MF of PCs are unaffected, even in no-ideal storage and transport circumstances with respect to agitation, temperature, and force.

2.
Transfusion ; 57(11): 2701-2711, 2017 11.
Article in English | MEDLINE | ID: mdl-28766731

ABSTRACT

BACKGROUND: The pathomechanisms of morbidity due to blood transfusions are not yet entirely understood. Elevated levels of red blood cell-derived microparticles (RMPs) are found in coagulation-related pathologies and also in stored blood. Previous research has shown that RMPs mediate transfusion-related complications by the intrinsic pathway. We hypothesized that RMPs might play a role in post-transfusion thrombotic complications by enhancing procoagulant activity also through the extrinsic pathway of coagulation. STUDY DESIGN AND METHODS: In this laboratory study, blood from 18 healthy volunteers was stimulated with microparticles from expired stored red blood cells. Various clotting parameters were recorded. Flow cytometry, enzyme-linked immunosorbent assays, and real-time polymerase chain reaction were used to investigate possible mediating mechanisms. RESULTS: The addition of RMPs shortened the clotting time from 194 to 161 seconds (p < 0.001). After incubation with RMPs, there was increased expression of tissue factor (TF) on monocytes and in plasma. TF messenger RNA expression increased in a time-dependent and concentration-dependent manner. There was a significant induction of interleukin-1ß and interleukin-6. After stimulation with RMPs, there was a significant increase in the number of activated platelets, an increased percentage of PAC-1/CD62P (procaspase activating compound-1/platelet surface P-selectin) double-positive platelets, and an increased number of platelet-neutrophil duplets and platelet-monocyte duplets, indicating enhanced interaction of platelets with neutrophils and monocytes. Levels of CXCL-8 (C-X-C motif chemokine ligand 1) and interleukin-6 were significantly higher after treatment with RMPs. CONCLUSION: Our results suggest that RMPs trigger coagulation through TF signaling, induce the secretion of proinflammatory cytokines, and induce cell-cell interaction between platelets and neutrophils. Thus, under certain conditions, RMPs could play a role in post-transfusion complications through these mechanisms.


Subject(s)
Blood Coagulation , Cell-Derived Microparticles/physiology , Erythrocytes/cytology , Inflammation , Transfusion Reaction , Blood Preservation , Cell Communication , Erythrocytes/ultrastructure , Humans , Inflammation/etiology , Interleukin-6/blood , Interleukin-8/blood , Monocytes/metabolism , Platelet Activation , RNA, Messenger/blood , Thromboplastin/genetics , Thromboplastin/metabolism , Thrombosis/etiology
3.
BMC Health Serv Res ; 14: 576, 2014 Nov 19.
Article in English | MEDLINE | ID: mdl-25927460

ABSTRACT

BACKGROUND: Preoperative and hospital-acquired anaemia is common among surgical patients. It is associated with an increased risk of morbidity and mortality and a strong risk factor for allogeneic blood transfusions with their own inherent risks. Patient Blood Management (PBM) concepts aim to increase and preserve autologous erythrocyte volume and to optimise haemotherapy. They thus have great potential to benefit patients. METHODS/DESIGN: This prospective, multi-centre clinical trial tests the hypothesis that PBM programs are safe and effective in the care of adult surgical patients. Primary outcome is a composite endpoint of adverse events and in-hospital mortality. DISCUSSION: This trial will determine whether the implementation of a PBM program is safe and effective in terms of clinical outcome compared to a pre-implementation cohort. This trial is registered at www.clinicaltrials.gov (NCT01820949).


Subject(s)
Anemia/therapy , Blood Banks/standards , Blood Safety/standards , Blood Transfusion/standards , Hemorrhage/therapy , Adult , Aged , Aged, 80 and over , Female , Germany , Humans , Male , Middle Aged , Program Evaluation , Prospective Studies
SELECTION OF CITATIONS
SEARCH DETAIL
...