Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Ecol Evol ; 10(12): 5383-5390, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32607160

ABSTRACT

Senescence has been studied since a long time by theoreticians in ecology and evolution, but empirical support in natural population has only recently been accumulating. One of the current challenges is the investigation of senescence of multiple fitness components and the study of differences between sexes. Until now, studies have been more frequently conducted on females than on males and rather in long-lived than in short-lived species. To reach a more fundamental understanding of the evolution of senescence, it is critical to investigate age-specific survival and reproduction performance in both sexes and in a large range of species with contrasting life histories. In this study, we present results on patterns of age-specific and sex-specific variation in survival and reproduction in the whinchat Saxicola rubetra, a short-lived passerine. We compiled individual-based long-term datasets from seven populations that were jointly analyzed within a Bayesian modeling framework. We found evidence for senescence in survival with a continuous decline after the age of 1 year, but no evidence of reproductive senescence. Furthermore, we found no clear evidence for sex effects on these patterns. We discuss these results in light of previous studies documenting senescence in short-lived birds. We note that most of them have been conducted in populations breeding in nest boxes, and we question the potential effect of the nest boxes on the shape of age-reproductive trajectories.

2.
ACS Appl Mater Interfaces ; 6(15): 12270-8, 2014 Aug 13.
Article in English | MEDLINE | ID: mdl-25014337

ABSTRACT

Superparamagnetic Ni nanoparticles with diameters of about 3 nm are formed in situ at room temperature in a polysilazane matrix, forming Ni/polysilazane nanocomposite, in the reaction between a polysilazane and trans-bis(aceto-kO)bis(2-aminoethanol-k(2)N,O)nickel(II). The thermolysis of the Ni/polysilazane nanocomposite at 700 °C in an argon atmosphere results in a microporous superparamagnetic Ni/silicon oxycarbonitride (Ni/SiCNO) ceramic nanocomposite. The growth of Ni nanoparticles in Ni/SiCNO ceramic nanocomposite is totally suppressed even after thermolysis at 700 °C, as confirmed by HRTEM and SQUID characterizations. The analysis of saturation magnetization of Ni nanoparticles in Ni/polysilazane and Ni/SiCNO nanocomposites indicates that the saturation magnetization of Ni nanoparticles is higher than expected values and infers that the surfaces of Ni nanoparticles are not oxidized. The microporous superparamagnetic Ni/SiCNO nanocomposite is shaped as a free-standing monolith and foam. In addition, Ni/SiCNO membranes are fabricated by the dip-coating of a tubular alumina substrate in a dispersion of Ni/polysilazane in THF followed by a thermolysis at 700 °C under an argon atmosphere. The gas separation performance of Ni/SiCNO membranes at 25 and 300 °C is assessed by the single gas permeance (pressure rise technique) using He, H2, CO2, N2, CH4, n-propene, n-propane, n-butene, n-butane, and SF6 as probe molecules. After hydrothermal treatment, the higher increase in the hydrogen permeance compared to the permeance of other gases as a function of temperature indicates that the hydrogen affinity of Ni nanoparticles influences the transport of hydrogen in the Ni/SiCNO membrane and Ni nanoparticles stabilize the structure against hydrothermal corrosion.

3.
Inorg Chem ; 51(14): 7764-73, 2012 Jul 16.
Article in English | MEDLINE | ID: mdl-22734686

ABSTRACT

Nanoporous SnO(2)-ZnO heterojunction nanocatalyst was prepared by a straightforward two-step procedure involving, first, the synthesis of nanosized SnO(2) particles by homogeneous precipitation combined with a hydrothermal treatment and, second, the reaction of the as-prepared SnO(2) particles with zinc acetate followed by calcination at 500 °C. The resulting nanocatalysts were characterized by X-ray diffraction (XRD), FTIR, Raman, X-ray photoelectron spectroscopy (XPS), nitrogen adsorption-desorption analyses, transmission electron microscopy (TEM), and UV-vis diffuse reflectance spectroscopy. The SnO(2)-ZnO photocatalyst was made of a mesoporous network of aggregated wurtzite ZnO and cassiterite SnO(2) nanocrystallites, the size of which was estimated to be 27 and 4.5 nm, respectively, after calcination. According to UV-visible diffuse reflectance spectroscopy, the evident energy band gap value of the SnO(2)-ZnO photocatalyst was estimated to be 3.23 eV to be compared with those of pure SnO(2), that is, 3.7 eV, and ZnO, that is, 3.2 eV, analogues. The energy band diagram of the SnO(2)-ZnO heterostructure was directly determined by combining XPS and the energy band gap values. The valence band and conduction band offsets were calculated to be 0.70 ± 0.05 eV and 0.20 ± 0.05 eV, respectively, which revealed a type-II band alignment. Moreover, the heterostructure SnO(2)-ZnO photocatalyst showed much higher photocatalytic activities for the degradation of methylene blue than those of individual SnO(2) and ZnO nanomaterials. This behavior was rationalized in terms of better charge separation and the suppression of charge recombination in the SnO(2)-ZnO photocatalyst because of the energy difference between the conduction band edges of SnO(2) and ZnO as evidenced by the band alignment determination. Finally, this mesoporous SnO(2)-ZnO heterojunction nanocatalyst was stable and could be easily recycled several times opening new avenues for potential industrial applications.


Subject(s)
Methylene Blue/chemistry , Nanostructures/chemistry , Tin Compounds/chemistry , Zinc Oxide/chemistry , Catalysis , Particle Size , Photochemical Processes , Surface Properties , Tin Compounds/chemical synthesis , Zinc Oxide/chemical synthesis
4.
J Anim Ecol ; 80(1): 225-34, 2011 Jan.
Article in English | MEDLINE | ID: mdl-21039479

ABSTRACT

1. Populations of plants and animals typically fluctuate because of the combined effects of density-dependent and density-independent processes. The study of these processes is complicated by the fact that population sizes are typically not known exactly, because population counts are subject to sampling variance. Although the existence of sampling variance is broadly acknowledged, relatively few studies on time-series data have accounted for it, which can result in wrong inferences about population processes. 2. To increase our understanding of population dynamics, we analysed time series from six Central European populations of the migratory red-backed shrike Lanius collurio by simultaneously assessing the strength of density dependence, process and sampling variance. In addition, we evaluated hypotheses predicting effects of factors presumed to operate on the breeding grounds, at stopover sites in eastern Africa during fall and spring migration and in the wintering grounds in southern Africa. We used both simple and state-space formulations of the Gompertz equation to model population size. 3. Across populations and modelling approaches, we found consistent evidence for negative density-dependent population regulation. Further, process variance contributed substantially to variation in population size, while sampling variance did not. Environmental conditions in eastern and southern Africa appear to influence breeding population size, as rainfall in the Sahel during fall migration and in the south African wintering areas were positively related to population size in the following spring in four of six populations. In contrast, environmental conditions in the breeding grounds were not related to population size. 4. Our findings suggest negative density-dependent regulation of red-backed shrike breeding populations and are consistent with the long-standing hypothesis that conditions in the African staging and wintering areas influence population numbers of species breeding in Europe. 5. This study highlights the importance of jointly investigating density-dependent and density-independent processes to improve our understanding of factors influencing population fluctuations in space and time.


Subject(s)
Animal Migration/physiology , Birds/physiology , Ecosystem , Passeriformes/physiology , Animals , Population Density , Population Dynamics , Time Factors
5.
Oecologia ; 143(1): 37-50, 2005 Mar.
Article in English | MEDLINE | ID: mdl-15586295

ABSTRACT

Numerous hypotheses have been proposed to explain variation in reproductive performance and local recruitment of animals. While most studies have examined the influence of one or a few social and ecological factors on fitness traits, comprehensive analyses jointly testing the relative importance of each of many factors are rare. We investigated how a multitude of environmental and social conditions simultaneously affected reproductive performance and local recruitment of the red-backed shrike Lanius collurio (L.). Specifically, we tested hypotheses relating to timing of breeding, parental quality, nest predation, nest site selection, territory quality, intraspecific density and weather. Using model selection procedures, predictions of each hypothesis were first analysed separately, before a full model was constructed including variables selected in the single-hypothesis tests. From 1988 to 1992, 50% of 332 first clutches produced at least one fledgling, while 38.7% of 111 replacement clutches were successful. Timing of breeding, nest site selection, predation pressure, territory quality and intraspecific density influenced nest success in the single-hypothesis tests. The full model revealed that nest success was negatively associated with laying date, intraspecific density, and year, while nest success increased with nest concealment. Number of fledglings per successful nest was only influenced by nest concealment: better-camouflaged nests produced more fledglings. Probability of local recruitment was related to timing of breeding, parental quality and territory quality in the single-hypothesis tests. The full models confirmed the important role of territory quality for recruitment probability. Our results suggest that reproductive performance, and particularly nest success, of the red-backed shrike is primarily affected by timing of breeding, nest site selection, and intraspecific density. This study highlights the importance of considering many factors at the same time, when trying to evaluate their relative contributions to fitness and life history evolution.


Subject(s)
Homing Behavior , Passeriformes/physiology , Reproduction , Weather , Altitude , Animals , Environment , Models, Biological , Population Density , Population Dynamics , Predatory Behavior , Rain , Seasons , Switzerland , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...