Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Pulm Med ; 19(1): 57, 2019 Mar 01.
Article in English | MEDLINE | ID: mdl-30823913

ABSTRACT

BACKGROUND: Exercise training is an important component of pulmonary rehabilitation (PR) programmes in chronic obstructive pulmonary disease (COPD), but the great majority of COPD patients who would benefit from PR never follow such programmes or fail to maintain exercise training after PR completion. Against this background, we developed an exercise training programme that requires minimal equipment and can be implemented long-term in the patient's home-setting. The aims of the HOMEX-1 and HOMEX-2 trials are to assess the effectiveness of this home-based exercise training programme in two groups of COPD patients over the course of one year: patients who have completed PR (HOMEX-1 trial) and patients who did not enrol in existing PR programmes within the last two years (HOMEX-2 trial). METHODS: HOMEX-1 and HOMEX-2 are multicentre, parallel group, randomised controlled trials. For both trials each, it is planned to include 120 study participants with a diagnosis of COPD. Participants will be randomised with a 1:1 ratio into the intervention group or the control group (usual care/no intervention). The intervention consists of minimal-equipment exercise training elements with progressive level of intensity, conducted by the participant during six days per week and instructed and coached by a trained health care professional during three home visits and regular telephone calls during one year. Primary outcome is change in dyspnoea (domain of Chronic Respiratory Questionnaire) from baseline to 12-months follow-up. Secondary outcomes are change in dyspnoea over the course of the year (assessed at 3, 6 and 12 month) and change in functional exercise capacity, physical activity, health-related quality of life, health status, exacerbations and symptoms from baseline to 12 months follow-up. In addition, explanatory, safety and cost-effectiveness outcomes will be assessed. We will conduct intention-to-treat analyses separately per trial and per protocol analyses as sensitivity analyses. DISCUSSION: The HOMEX-1 and HOMEX-2 trials assess a novel intervention that provides an innovative way of making exercise training as accessible as possible for COPD patients. If the intervention proves to be effective long-term, it will fill the gap of providing an easily accessible and feasible intervention so that more COPD patients can follow an exercise programme. TRIAL REGISTRATION: ClinicalTrials.gov Identifier: HOMEX-1 NCT03461887 (registration date: March 12, 2018; retrospectively registered); HOMEX-2 NCT03654092 (registration date: August 31, 2018).


Subject(s)
Dyspnea/rehabilitation , Exercise Therapy/methods , Pulmonary Disease, Chronic Obstructive/rehabilitation , Quality of Life , Self Care/methods , Cost-Benefit Analysis , Exercise , Humans , Pulmonary Disease, Chronic Obstructive/physiopathology , Randomized Controlled Trials as Topic , Self Efficacy , Sports Equipment , Surveys and Questionnaires , Switzerland , Walk Test
2.
Nature ; 468(7323): 553-6, 2010 Nov 25.
Article in English | MEDLINE | ID: mdl-20981010

ABSTRACT

Biodiversity is rapidly declining, and this may negatively affect ecosystem processes, including economically important ecosystem services. Previous studies have shown that biodiversity has positive effects on organisms and processes across trophic levels. However, only a few studies have so far incorporated an explicit food-web perspective. In an eight-year biodiversity experiment, we studied an unprecedented range of above- and below-ground organisms and multitrophic interactions. A multitrophic data set originating from a single long-term experiment allows mechanistic insights that would not be gained from meta-analysis of different experiments. Here we show that plant diversity effects dampen with increasing trophic level and degree of omnivory. This was true both for abundance and species richness of organisms. Furthermore, we present comprehensive above-ground/below-ground biodiversity food webs. Both above ground and below ground, herbivores responded more strongly to changes in plant diversity than did carnivores or omnivores. Density and richness of carnivorous taxa was independent of vegetation structure. Below-ground responses to plant diversity were consistently weaker than above-ground responses. Responses to increasing plant diversity were generally positive, but were negative for biological invasion, pathogen infestation and hyperparasitism. Our results suggest that plant diversity has strong bottom-up effects on multitrophic interaction networks, with particularly strong effects on lower trophic levels. Effects on higher trophic levels are indirectly mediated through bottom-up trophic cascades.


Subject(s)
Biodiversity , Models, Biological , Plant Physiological Phenomena , Animals , Population Density
SELECTION OF CITATIONS
SEARCH DETAIL
...