Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 803
Filter
1.
Angew Chem Int Ed Engl ; : e202406389, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38801753

ABSTRACT

The recently identified natural product NOSO-95A from entomopathogenic Xenorhabdus bacteria, derived from a biosynthetic gene cluster (BGC) encoding a non-ribosomal peptide synthetase (NRPS), was the first member of the odilorhabdin class of antibiotics. This class exhibits broad-spectrum antibiotic activity and inspired the development of the synthetic derivative NOSO-502, which holds potential as a new clinical drug by breaking antibiotic resistance. While the mode of action of odilorhabdins was broadly investigated, their biosynthesis pathway remained poorly understood. Here we describe the heterologous production of NOSO-95A in Escherichia coli after refactoring the complete BGC. Since the production titer was low, NRPS engineering was applied to uncover the underlying biosynthetic principles. For this, modules of the odilorhabdin NRPS fused to other synthetases were co-expressed with candidate hydroxylases encoded in the BGC allowing the characterization of the biosynthesis of three unusual amino acids and leading to the identification of a prodrug-activation mechanism by deacylation. Our work demonstrates the application of NRPS engineering as a blueprint to mechanistically elucidate large or toxic NRPS and provides the basis to generate novel odilorhabdin analogues with improved properties in the future.

2.
Cells ; 13(10)2024 May 09.
Article in English | MEDLINE | ID: mdl-38786034

ABSTRACT

Lysophosphatidic acid (LPA) species, prevalent in the tumor microenvironment (TME), adversely impact various cancers. In ovarian cancer, the 18:0 and 20:4 LPA species are selectively associated with shorter relapse-free survival, indicating distinct effects on cellular signaling networks. Macrophages represent a cell type of high relevance in the TME, but the impact of LPA on these cells remains obscure. Here, we uncovered distinct LPA-species-specific responses in human monocyte-derived macrophages through unbiased phosphoproteomics, with 87 and 161 phosphosites upregulated by 20:4 and 18:0 LPA, respectively, and only 24 shared sites. Specificity was even more pronounced for downregulated phosphosites (163 versus 5 sites). Considering the high levels 20:4 LPA in the TME and its selective association with poor survival, this finding may hold significant implications. Pathway analysis pinpointed RHO/RAC1 GTPase signaling as the predominantly impacted target, including AHRGEF and DOCK guanine exchange factors, ARHGAP GTPase activating proteins, and regulatory protein kinases. Consistent with these findings, exposure to 20:4 resulted in strong alterations to the actin filament network and a consequent enhancement of macrophage migration. Moreover, 20:4 LPA induced p38 phosphorylation, a response not mirrored by 18:0 LPA, whereas the pattern for AKT was reversed. Furthermore, RNA profiling identified genes involved in cholesterol/lipid metabolism as selective targets of 20:4 LPA. These findings imply that the two LPA species cooperatively regulate different pathways to support functions essential for pro-tumorigenic macrophages within the TME. These include cellular survival via AKT activation and migration through RHO/RAC1 and p38 signaling.


Subject(s)
Lysophospholipids , Macrophages , Proteomics , Signal Transduction , Humans , Lysophospholipids/metabolism , Macrophages/metabolism , Proteomics/methods , Phosphorylation/drug effects , Phosphoproteins/metabolism
3.
Anal Chem ; 2024 May 29.
Article in English | MEDLINE | ID: mdl-38810147

ABSTRACT

Virus inactivation is a prerequisite for safe handling of high-risk infectious samples. ß-Propiolactone (BPL) is an established reagent with proven virucidal efficacy. BPL primarily reacts with DNA, RNA, and amino acids. The latter may modify antigenic protein epitopes interfering with binding properties of affinity reagents such as antibodies and aptamers used in affinity proteomic screens. We investigated (i) the impact of BPL treatment on the analysis of protein levels in plasma samples using the aptamer-based affinity proteomic platform SomaScan and (ii) effects on protein detection in conditioned medium samples using the proximity extension assay-based Olink Target platform. In the former setup, BPL-treated and native plasma samples from patients with ovarian cancer (n = 12) and benign diseases (n = 12) were analyzed using the SomaScan platform. In the latter, conditioned media samples collected from cultured T cells with (n = 3) or without (n = 3) anti-CD3 antibody stimulation were analyzed using the Olink Target platform. BPL-related changes in protein detection were evaluated comparing native and BPL-treated states, simulating virus inactivation, and impact on measurable group differences was assessed. While approximately one-third of SomaScan measurements were significantly changed by the BPL treatment, a majority of antigen/aptamer interactions remained unaffected. Interaction effects of BPL treatment and disease state, potentially altering detectability of group differences, were observable for less than one percent of targets (0.6%). BPL effects on protein detection with Olink Target were also limited, affecting 3.6% of detected proteins with no observable interaction effects. Thus, effects of BPL treatment only moderately interfere with affinity proteomic detectability of differential protein expression between different experimental groups. Overall, the results prove high-throughput affinity proteomics well suited for the analysis of high-risk samples inactivated using BPL.

4.
Nucleic Acids Res ; 2024 May 08.
Article in English | MEDLINE | ID: mdl-38716863

ABSTRACT

Quantifying microbiome species and composition from metagenomic assays is often challenging due to its time-consuming nature and computational complexity. In Bioinformatics, k-mer-based approaches were long established to expedite the analysis of large sequencing data and are now widely used to annotate metagenomic data. We make use of k-mer counting techniques for efficient and accurate compositional analysis of microbiota from whole metagenome sequencing. Mibianto solves this problem by operating directly on read files, without manual preprocessing or complete data exchange. It handles diverse sequencing platforms, including short single-end, paired-end, and long read technologies. Our sketch-based workflow significantly reduces the data volume transferred from the user to the server (up to 99.59% size reduction) to subsequently perform taxonomic profiling with enhanced efficiency and privacy. Mibianto offers functionality beyond k-mer quantification; it supports advanced community composition estimation, including diversity, ordination, and differential abundance analysis. Our tool aids in the standardization of computational workflows, thus supporting reproducibility of scientific sequencing studies. It is adaptable to small- and large-scale experimental designs and offers a user-friendly interface, thus making it an invaluable tool for both clinical and research-oriented metagenomic studies. Mibianto is freely available without the need for a login at: https://www.ccb.uni-saarland.de/mibianto.

5.
J Pharm Biomed Anal ; 245: 116187, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38692215

ABSTRACT

The continuous emergence of new psychoactive substances (NPS) attracted a great deal of attention within recent years. Lately, the two hallucinogenic NPS 1cP-LSD and 4-AcO-DET have appeared on the global market. Knowledge about their metabolism to identify potential metabolic targets for analysis and their cytotoxic properties is lacking. The aim of this work was thus to study their in vitro and in vivo metabolism in pooled human liver S9 fraction (pHLS9) and in zebrafish larvae (ZL) by means of liquid chromatography-high-resolution tandem mass spectrometry. Monooxygenases involved in the initial metabolic steps were elucidated using recombinant human isozymes. Investigations on their cytotoxicity were performed on the human hepatoma cell line HepG2 using a multiparametric, fluorescence-based high-content screening assay. This included measurement of CYP-enzyme mediated effects by means of the unspecific CYP inhibitor 1-aminbenzotriazole (ABT). Several phase I metabolites of both compounds and two phase II metabolites of 4-AcO-DET were produced in vitro and in vivo. After microinjection of 1cP-LSD into the caudal vein of ZL, three out of seven metabolites formed in pHLS9 were also detected in ZL. Twelve 4-AcO-DET metabolites were identified in ZL after exposure via immersion bath and five of them were found in pHLS9 incubations. Notably, unique metabolites of 4-AcO-DET were only produced by ZL, whereas 1cP-LSD specific metabolites were found both in ZL and in pHLS9. No toxic effects were observed for 1cP-LSD and 4-AcO-DET in HepG2 cells, however, two parameters were altered in incubations containing 4-AcO-DET together with ABT compared with incubations without ABT but in concentrations far above expected in vivo concentration. Further investigations should be done with other hepatic cell lines expressing higher levels of CYP enzymes.


Subject(s)
Hallucinogens , Larva , Liver , Tandem Mass Spectrometry , Zebrafish , Animals , Humans , Hep G2 Cells , Tandem Mass Spectrometry/methods , Larva/drug effects , Larva/metabolism , Chromatography, Liquid/methods , Hallucinogens/toxicity , Liver/drug effects , Liver/metabolism , Phenethylamines/toxicity , High-Throughput Screening Assays/methods , Cytochrome P-450 Enzyme System/metabolism , Benzylamines , Dimethoxyphenylethylamine/analogs & derivatives
6.
Clin Transl Med ; 14(4): e1604, 2024 04.
Article in English | MEDLINE | ID: mdl-38566518

ABSTRACT

BACKGROUND: IL-17A and TNF synergistically promote inflammation and tumorigenesis. Their interplay and impact on ovarian carcinoma (OC) progression are, however, poorly understood. We addressed this question focusing on mesothelial cells, whose interaction with tumor cells is known to play a pivotal role in transcoelomic metastasis formation. METHODS: Flow-cytometry and immunohistochemistry experiments were employed to identify cellular sources of IL-17A and TNF. Changes in transcriptomes and secretomes were determined by bulk and single cell RNA sequencing as well as affinity proteomics. Functional consequences were investigated by microscopic analyses and tumor cell adhesion assays. Potential clinical implications were assessed by immunohistochemistry and survival analyses. RESULTS: We identified Th17 cells as the main population of IL-17A- and TNF producers in ascites and detected their accumulation in early omental metastases. Both IL-17A and its receptor subunit IL-17RC were associated with short survival of OC patients, pointing to a role in clinical progression. IL-17A and TNF synergistically induced the reprogramming of mesothelial cells towards a pro-inflammatory mesenchymal phenotype, concomitantly with a loss of tight junctions and an impairment of mesothelial monolayer integrity, thereby promoting cancer cell adhesion. IL-17A and TNF synergistically induced the Th17-promoting cytokines IL-6 and IL-1ß as well as the Th17-attracting chemokine CCL20 in mesothelial cells, indicating a reciprocal crosstalk that potentiates the tumor-promoting role of Th17 cells in OC. CONCLUSIONS: Our findings reveal a novel function for Th17 cells in the OC microenvironment, which entails the IL-17A/TNF-mediated induction of mesothelial-mesenchymal transition, disruption of mesothelial layer integrity and consequently promotion of OC cell adhesion. These effects are potentiated by a positive feedback loop between mesothelial and Th17 cells. Together with the observed clinical associations and accumulation of Th17 cells in omental micrometastases, our observations point to a potential role in early metastases formation and thus to new therapeutic options.


Subject(s)
Ovarian Neoplasms , Th17 Cells , Humans , Female , Interleukin-17/metabolism , Cytokines/metabolism , Ovarian Neoplasms/metabolism , Inflammation/metabolism , Tumor Microenvironment
8.
J Med Chem ; 67(6): 4483-4495, 2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38452116

ABSTRACT

The human immunodeficiency virus (HIV)-encoded accessory protein Nef enhances pathogenicity by reducing major histocompatibility complex I (MHC-I) cell surface expression, protecting HIV-infected cells from immune recognition. Nef-dependent downmodulation of MHC-I can be reversed by subnanomolar concentrations of concanamycin A (1), a well-known inhibitor of vacuolar ATPase, at concentrations below those that interfere with lysosomal acidification or degradation. We conducted a structure-activity relationship study that assessed 76 compounds for Nef inhibition, 24 and 72 h viability, and lysosomal neutralization in Nef-expressing primary T cells. This analysis demonstrated that the most potent compounds were natural concanamycins and their derivatives. Comparison against a set of new, semisynthetic concanamycins revealed that substituents at C-8 and acylation of C-9 significantly affected Nef potency, target cell viability, and lysosomal neutralization. These findings provide important progress toward understanding the mechanism of action of these compounds and the identification of an advanced lead anti-HIV Nef inhibitory compound.


Subject(s)
HIV Infections , HIV-1 , Vacuolar Proton-Translocating ATPases , Humans , HIV-1/physiology , Immune Evasion , nef Gene Products, Human Immunodeficiency Virus/metabolism , Lysosomes/metabolism , Hydrogen-Ion Concentration
9.
Bioinspir Biomim ; 19(3)2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38452384

ABSTRACT

Achieving autonomous operation in complex natural environment remains an unsolved challenge. Conventional engineering approaches to this problem have focused on collecting large amounts of sensory data that are used to create detailed digital models of the environment. However, this only postpones solving the challenge of identifying the relevant sensory information and linking it to action control to the domain of the digital world model. Furthermore, it imposes high demands in terms of computing power and introduces large processing latencies that hamper autonomous real-time performance. Certain species of bats that are able to navigate and hunt their prey in dense vegetation could be a biological model system for an alternative approach to addressing the fundamental issues associated with autonomy in complex natural environments. Bats navigating in dense vegetation rely on clutter echoes, i.e. signals that consist of unresolved contributions from many scatters. Yet, the animals are able to extract the relevant information from these input signals with brains that are often less than 1 g in mass. Pilot results indicate that information relevant to location identification and passageway finding can be directly obtained from clutter echoes, opening up the possibility that the bats' skill can be replicated in man-made autonomous systems.


Subject(s)
Chiroptera , Echolocation , Animals , Models, Biological
10.
Angew Chem Int Ed Engl ; 63(19): e202319765, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38502093

ABSTRACT

The natural product chlorotonil displays high potency against multidrug-resistant Gram-positive bacteria and Plasmodium falciparum. Yet, its scaffold is characterized by low solubility and oral bioavailability, but progress was recently made to enhance these properties. Applying late-stage functionalization, we aimed to further optimize the molecule. Previously unknown reactions including a sulfur-mediated dehalogenation were revealed. Dehalogenil, the product of this reaction, was identified as the most promising compound so far, as this new derivative displayed improved solubility and in vivo efficacy while retaining excellent antimicrobial activity. We confirmed superb activity against multidrug-resistant clinical isolates of Staphylococcus aureus and Enterococcus spp. and mature transmission stages of Plasmodium falciparum. We also demonstrated favorable in vivo toxicity, pharmacokinetics and efficacy in infection models with S. aureus. Taken together, these results identify dehalogenil as an advanced lead molecule.


Subject(s)
Anti-Bacterial Agents , Staphylococcus aureus , Staphylococcus aureus/drug effects , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Plasmodium falciparum/drug effects , Microbial Sensitivity Tests , Animals , Enterococcus/drug effects , Molecular Structure , Humans , Mice
11.
J Am Chem Soc ; 146(13): 8981-8990, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38513269

ABSTRACT

The rapid development of antibiotic resistance, especially among difficult-to-treat Gram-negative bacteria, is recognized as a serious and urgent threat to public health. The detection and characterization of novel resistance mechanisms are essential to better predict the spread and evolution of antibiotic resistance. Corramycin is a novel and modified peptidic antibiotic with activity against several Gram-negative pathogens. We demonstrate that the kinase ComG, part of the corramycin biosynthetic gene cluster, phosphorylates and thereby inactivates corramycin, leading to the resistance of the host. Remarkably, we found that the closest structural homologues of ComG are aminoglycoside phosphotransferases; however, ComG shows no activity toward this class of antibiotics. The crystal structure of ComG in complex with corramycin reveals that corramycin adopts a ß-hairpin-like structure and allowed us to define the changes leading to a switch in substrate from sugar to peptide. Bioinformatic analyses suggest a limited occurrence of ComG-like proteins, which along with the absence of cross-resistance to clinically used drugs positions corramycin as an attractive antibiotic for further development.


Subject(s)
Anti-Bacterial Agents , Gram-Negative Bacteria , Anti-Bacterial Agents/chemistry , Gram-Negative Bacteria/metabolism , Kanamycin Kinase/chemistry , Kanamycin Kinase/genetics , Kanamycin Kinase/metabolism , Peptides
12.
One Health Outlook ; 6(1): 4, 2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38549118

ABSTRACT

BACKGROUND: Different production systems of livestock animals influence various factors, including the gut microbiota. METHODS: We investigated whether changing the conditions from barns to free-range chicken farming impacts the microbiome over the course of three weeks. We compared the stool microbiota of chicken from industrial barns after introducing them either in community or separately to a free-range environment. RESULTS: Over the six time points, 12 taxa-mostly lactobacilli-changed significantly. As expected, the former barn chicken cohort carries more resistances to common antibiotics. These, however, remained positive over the observed period. At the end of the study, we collected eggs and compared metabolomic profiles of the egg white and yolk to profiles of eggs from commercial suppliers. Here, we observed significant differences between commercial and fresh collected eggs as well as differences between the former barn chicken and free-range chicken. CONCLUSION: Our data indicate that the gut microbiota can undergo alterations over time in response to changes in production systems. These changes subsequently exert an influence on the metabolites found in the eggs. The preliminary results of our proof-of-concept study motivate larger scale observations with more individual chicken and longer observation periods.

13.
Arch Pharm (Weinheim) ; 357(4): e2300656, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38304944

ABSTRACT

Designing novel candidates as potential antibacterial scaffolds has become crucial due to the lack of new antibiotics entering the market and the persistent rise in multidrug resistance. Here, we describe a new class of potent antibacterial agents based on a 5-aryl-N2,N4-dibutylpyrimidine-2,4-diamine scaffold. Structural optimization focused on the 5-aryl moiety and the bioisosteric replacement of the side chain linker atom. Screening of the synthesized compounds focused on a panel of bacterial strains, including gram-positive Staphylococcus aureus strains (Newman MSSA, methicillin- and vancomycin-resistant), and the gram-negative Escherichia coli (ΔAcrB strain). Several compounds showed broad-spectrum antibacterial activity with compound 12, bearing a 4-chlorophenyl substituent, being the most potent among this series of compounds. This frontrunner compound revealed a minimum inhibitory concentration (MIC) value of 1 µg/mL against the S. aureus strain (Mu50 methicillin-resistant S. aureus/vancomycin-intermediate S. aureus) and an MIC of 2 µg/mL against other tested strains. The most potent derivatives were further tested against a wider panel of bacteria and evaluated for their cytotoxicity, revealing further potent activities toward Streptococcus pneumoniae, Enterococcus faecium, and Enterococcus faecalis. To explore the mode of action, compound 12 was tested in a macromolecule inhibition assay. The obtained data were supported by the safety profile of compound 12, which possessed an IC50 of 12.3 µg/mL against HepG2 cells. The current results hold good potential for a new class of extended-spectrum antibacterial agents.


Subject(s)
Anti-Bacterial Agents , Methicillin-Resistant Staphylococcus aureus , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Staphylococcus aureus , Structure-Activity Relationship , Bacteria , Pyrimidines/pharmacology , Microbial Sensitivity Tests
14.
Microbiol Spectr ; 12(3): e0368923, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38298128

ABSTRACT

In the past century, microbial natural products have proven themselves to be substantial and fruitful sources of anti-infectives. In addition to the well-studied Actinobacteria, understudied bacterial taxa like the Gram-negative myxobacteria have increasingly gained attention in the ongoing search for novel and biologically active natural products. In the course of a regional sampling campaign to source novel myxobacteria, we recently uncovered new myxobacterial strains MCy12716 and MCy12733 belonging to the Myxococcaceae clade. Early bioactivity screens of the bacterial extracts revealed the presence of bioactive natural products that were identified as angiolam A and several novel derivatives. Sequencing of the corresponding producer strains allowed the identification of the angiolam biosynthetic gene cluster, which was verified by targeted gene inactivation. Based on bioinformatic analysis of the biosynthetic gene cluster, a concise biosynthesis model was devised to explain angiolam biosynthesis. Importantly, novel angiolam derivatives uncovered in this study named angiolams B, C, and D were found to display promising antiparasitic activities against the malaria pathogen Plasmodium falciparum in the 0.3-0.8 µM range.IMPORTANCEThe COVID-19 pandemic and continuously emerging antimicrobial resistance (AMR) have recently raised awareness about limited treatment options against infectious diseases. However, the shortage of treatment options against protozoal parasitic infections, like malaria, is much more severe, especially for the treatment of so-called neglected tropical diseases. The detection of anti-parasitic bioactivities of angiolams produced by MCy12716 and MCy12733 displays the hidden potential of scarcely studied natural products to have promising biological activities in understudied indications. Furthermore, the improved biological activities of novel angiolam derivatives against Plasmodium falciparum and the evaluation of its biosynthesis display the opportunities of the angiolam scaffold on route to treat protozoal parasitic infections as well as possible ways to increase the production of derivatives with improved bioactivities.


Subject(s)
Biological Products , Malaria, Falciparum , Myxococcales , Humans , Myxococcales/genetics , Antiparasitic Agents/pharmacology , Pandemics , Plasmodium falciparum , Biological Products/pharmacology
16.
Chemistry ; 30(19): e202303796, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38217886

ABSTRACT

Cystobactamids are aromatic oligoamides that exert their natural antibacterial properties by inhibition of bacterial gyrases. Such aromatic oligoamides were proposed to inhibit α-helix-mediated protein-protein interactions and may serve for specific recognition of DNA. Based on this suggestion, we designed new derivatives that have duplicated cystobactamid triarene units as model systems to decipher the specific binding mode of cystobactamids to double stranded DNA. Solution NMR analyses revealed that natural cystobactamids as well as their elongated analogues show an overall bent shape at their central aliphatic unit, with an average CX-CY-CZ angle of ~110 degrees. Our finding is corroborated by the target-bound structure of close analogues, as established by cryo-EM very recently. Cystobactamid CN-861-2 binds directly to the bacterial gyrase with an affinity of 9 µM, and also exhibits DNA-binding properties with specificity for AT-rich DNA. Elongation/dimerization of the triarene subunit of native cystobactamids is demonstrated to lead to an increase in DNA binding affinity. This implies that cystobactamids' gyrase inhibitory activity necessitates not just interaction with the gyrase itself, but also with DNA via their triarene unit.


Subject(s)
Anti-Bacterial Agents , Bacteria , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Amides/chemistry , DNA , Topoisomerase II Inhibitors/pharmacology , Topoisomerase II Inhibitors/chemistry
17.
Respir Res ; 25(1): 3, 2024 Jan 03.
Article in English | MEDLINE | ID: mdl-38172839

ABSTRACT

Chronic lung diseases such as chronic obstructive pulmonary disease and cystic fibrosis are incurable. Epithelial senescence, a state of dysfunctional cell cycle arrest, contributes to the progression of such diseases. Therefore, lung epithelial cells are a valuable target for therapeutic intervention. Here, we present a 3D airway lung organoid platform for the preclinical testing of active substances with regard to senescence, toxicity, and inflammation under standardized conditions in a 96 well format. Senescence was induced with doxorubicin and measured by activity of senescence associated galactosidase. Pharmaceutical compounds such as quercetin antagonized doxorubicin-induced senescence without compromising organoid integrity. Using single cell sequencing, we identified a subset of cells expressing senescence markers which was decreased by quercetin. Doxorubicin induced the expression of detoxification factors specifically in goblet cells independent of quercetin. In conclusion, our platform enables for the analysis of senescence-related processes and will allow the pre-selection of a wide range of compounds (e.g. natural products) in preclinical studies, thus reducing the need for animal testing.


Subject(s)
Cystic Fibrosis , Quercetin , Animals , Quercetin/metabolism , Quercetin/pharmacology , Cellular Senescence , Lung/metabolism , Cystic Fibrosis/metabolism , Gene Expression Profiling , Doxorubicin/pharmacology , Doxorubicin/metabolism , Organoids/metabolism
19.
Nat Commun ; 15(1): 791, 2024 Jan 26.
Article in English | MEDLINE | ID: mdl-38278788

ABSTRACT

DNA polymerase III sliding clamp (DnaN) was recently validated as a new anti-tuberculosis target employing griselimycins. Three (2 S,4 R)-4-methylproline moieties of methylgriselimycin play significant roles in target binding and metabolic stability. Here, we identify the mycoplanecin biosynthetic gene cluster by genome mining using bait genes from the 4-methylproline pathway. We isolate and structurally elucidate four mycoplanecins comprising scarce homo-amino acids and 4-alkylprolines. Evaluating mycoplanecin E against Mycobacterium tuberculosis surprisingly reveals an excitingly low minimum inhibition concentration at 83 ng/mL, thus outcompeting griselimycin by approximately 24-fold. We show that mycoplanecins bind DnaN with nanomolar affinity and provide a co-crystal structure of mycoplanecin A-bound DnaN. Additionally, we reconstitute the biosyntheses of the unusual L-homoleucine, L-homonorleucine, and (2 S,4 R)-4-ethylproline building blocks by characterizing in vitro the full set of eight enzymes involved. The biosynthetic study, bioactivity evaluation, and drug target validation of mycoplanecins pave the way for their further development to tackle multidrug-resistant mycobacterial infections.


Subject(s)
Mycobacterium tuberculosis , Tuberculosis , Humans , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Mycobacterium tuberculosis/metabolism , DNA Polymerase III/metabolism , Microbial Sensitivity Tests
20.
Int J Legal Med ; 138(3): 1149-1156, 2024 May.
Article in English | MEDLINE | ID: mdl-38091066

ABSTRACT

Biological traces inside firearm barrels were observed as a result of contact shots to the head. The present study was conducted to investigate the influence of the muzzle to target distance on staining inside the anterior and posterior part of firearm barrels. Ninety-nine shots were fired to so-called reference cubes (10% gelatine, 12 cm edge length, embedded paint-blood-pad) using three current handguns. Shot range was varied from contact to 50 cm distance. High-speed cameras recorded external backspatter. Endoscopic examination assessed visible staining along the barrel. Each two swabbings were gathered from the anterior and the posterior part of the barrel. The first swabs were submitted to quantitative PCR, the second ones to DNA-RNA-co-extraction. Thorough mechanical and chemical cleaning was performed to avoid any contamination which was controlled by negative zero swabs after each cleaning. In single shots up to 50 cm distance, minimal, but DNA-positive sporadic traces were detected inside the barrel in vicinity of the muzzle. Visible complex staining varying in extent was observed in the anterior barrel part for 10 cm or less distance in dependence of the calibre. The posterior part showed detectable traces only after close range shots (< 5 cm). Generally staining inside the barrel decreased from the muzzle to the rear end, which correlated with the yield of DNA. Some contact shots did not cause any staining in the posterior part of the barrel despite massive external backspatter. Blood-specific miRNA was primarily found where DNA was detected. This experience encourages to take a second swab for RNA analysis. The amount of nucleic acids in the barrel at varying muzzle to target distances is subject to large variations between individual shots and therefore appears not suitable for a reliable determination of the shot distance in a particular case on its own. Instead, shot range estimation should also take into account morphology and distribution of traces inside the barrel.


Subject(s)
Firearms , MicroRNAs , Wounds, Gunshot , Humans , Forensic Ballistics , Models, Biological , DNA/genetics , Staining and Labeling
SELECTION OF CITATIONS
SEARCH DETAIL
...