Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Animals (Basel) ; 13(11)2023 Jun 02.
Article in English | MEDLINE | ID: mdl-37889764

ABSTRACT

Fibroblast growth factor-23 (FGF-23) is a phosphaturic hormone used to monitor chronic kidney disease (CKD) in humans. The aim of this pilot study was to compare three diagnostic assays and to assess how the results correlate with parameters of renal dysfunction in cats. Four groups of 10 cats each were formed retrospectively according to creatinine, based on IRIS staging. FGF-23 was measured using two different ELISAs (MyBioSource and Kainos ELISA FGF-23 Kit) and an automated assay on the DiaSorin Liaison platform. Measurements were performed in 40 cats. Spearman's rank correlation coefficient showed a strong correlation between the Kainos and DiaSorin assays (ρ = 0.742/p < 0.001) and a low correlation (ρ = 0.443/p = 0.005) between the Kainos and MyBioSource assays. The measurements with the Kainos assay strongly correlated with urea (ρ = 0.835/p < 0.001) and creatinine (ρ = 0.764/p < 0.001), and moderately correlated with SDMA (ρ = 0.580/p < 0.001) and phosphorus (ρ = 0.532/p < 0.001). The results of the MyBioSource and DiaSorin assays only showed a moderate correlation with urea (ρ = 0.624/0.572) and creatinine (ρ = 0.622/0.510) concentrations (p = 0.001 each). The Kainos assay showed the strongest correlation (ρ = 0.806) with the various creatinine concentrations according to the IRIS, followed by the MyBioSource (ρ = 0.663/p < 0.001) and DiaSorin assays (ρ = 0.580/p < 0.001). Overall, the Kainos assay demonstrated the best correlations with both biomarkers and various creatinine concentrations according to the IRIS. Individual assay-based reference values should be established to make a reliable interpretation of FGF-23 levels possible to diagnose or monitor feline CKD.

2.
Front Vet Sci ; 8: 682393, 2021.
Article in English | MEDLINE | ID: mdl-34169111

ABSTRACT

The multidrug resistance gene MDR1 encodes for an efflux transporter called P-glycoprotein (P-gp). In the canine Mdr1 gene, a nonsense mutation was identified in certain dog breeds causing increased drug sensitivity to various P-gp substrates such as antiparasitic macrocyclic lactones. Symptoms of neurologic toxicity include ataxia, depression, salivation, tremor, apparent blindness, and mydriasis. In the current report, a Thuringian goat developed similar neurological signs after treatment with doramectin, a compound from the macrocyclic lactone class. Therefore, Mdr1 might be defective in this individual goat. For diagnostic purposes, sequencing of the complete mRNA transcript coding for caprine Mdr1 was performed to investigate a potential missense mutation. The Mdr1 transcripts of two related goats without drug sensitivity were also sequenced to allow differential diagnosis and were compared to the suspected drug-sensitive goat. The only position where the Mdr1 sequence from the suspected drug-sensitive goat differed was in the 3'-untranslated region, being a heterozygous single nucleotide polymorphism c.3875C>A. It can be suspected that this variant affects the expression level, stability, or translation efficiency of the Mdr1 mRNA transcript and therefore might be associated with the suspected drug sensitivity. To clarify this, further studies are needed, particularly investigating the Mdr1 mRNA and protein expression levels from brain material of affected goats. In conclusion, Mdr1 variants may exist not only in dogs, but also in individual goats. The current report provides the first Mdr1 mRNA transcript sequence of a goat and therefore represents the basis for more detailed Mdr1 sequence and expression analyses.

3.
Front Vet Sci ; 8: 808392, 2021.
Article in English | MEDLINE | ID: mdl-35265692

ABSTRACT

The multidrug resistance gene MDR1 (syn. ABCB1) encodes for the multidrug efflux transporter P-glycoprotein (P-gp), which is highly expressed at the blood-brain barrier and protects the brain from potentially neurotoxic compounds, such as ivermectin. MDR1 mutation in dogs is known to be linked to dramatically increased brain accumulation of ivermectin and life-threatening neurological toxicity. The present report describes two suspected ivermectin-sensitive Maine Coon cats, which exhibited neurological toxicity following subcutaneous application of therapeutic doses of ivermectin. Both cats showed a homozygous 2-bp deletion in the MDR1/ABCB1 coding sequence (ABCB11930_1931del TC, syn. MDR1 nt1930(del2)) that had previously been associated with a drug-sensitive phenotype in cats. For cat MDR1 genotyping, a novel TaqMan allelic discrimination assay was established and validated. This assay was used for ABCB11930_1931del TC genotyping of the drug-sensitive cats as well as of more than 50 relatives. About half of them had the heterozygous MDR1(+/-) genotype, while none of these related cats with former ivermectin treatment had a history of drug-sensitivity. In conclusion: The present study supports previous findings on drug-sensitivity in cats with homozygous ABCB11930_1931del TC mutation. The newly established TaqMan allelic discrimination assay provides a useful and reliable method for routine MDR1 genotyping in cats in order to identify drug-sensitive cats prior to treatment with established P-gp substrates such as ivermectin and other macrocyclic lactones and thus to improve therapeutic safety.

4.
Am J Physiol Gastrointest Liver Physiol ; 320(1): G66-G80, 2021 01 01.
Article in English | MEDLINE | ID: mdl-33174454

ABSTRACT

Human hepatic bile acid transporter Na+/taurocholate cotransporting polypeptide (NTCP) represents the liver-specific entry receptor for the hepatitis B and D viruses (HBV/HDV). Chronic hepatitis B and D affect several million people worldwide, but treatment options are limited. Recently, HBV/HDV entry inhibitors targeting NTCP have emerged as promising novel drug candidates. Nevertheless, the exact molecular mechanism that NTCP uses to mediate virus binding and entry into hepatocytes is still not completely understood. It is already known that human NTCP mRNA expression is downregulated under cholestasis. Furthermore, incubation of rat hepatocytes with the secondary bile acid taurolithocholic acid (TLC) triggers internalization of the rat Ntcp protein from the plasma membrane. In the present study, the long-term inhibitory effect of TLC on transport function, HBV/HDV receptor function, and membrane expression of human NTCP were analyzed in HepG2 and human embryonic kidney (HEK293) cells stably overexpressing NTCP. Even after short-pulse preincubation, TLC had a significant long-lasting inhibitory effect on the transport function of NTCP, but the NTCP protein was still present at the plasma membrane. Furthermore, binding of the HBV/HDV myr-preS1 peptide and susceptibility for in vitro HDV infection were significantly reduced by TLC preincubation. We hypothesize that TLC rapidly accumulates in hepatocytes and mediates long-lasting trans-inhibition of the transport and receptor function of NTCP via a particular TLC-binding site at an intracellularly accessible domain of NTCP. Physiologically, this trans-inhibition might protect hepatocytes from toxic overload of bile acids. Pharmacologically, it provides an interesting novel NTCP target site for potential long-acting HBV/HDV entry inhibitors.NEW & NOTEWORTHY The hepatic bile acid transporter NTCP is a high-affinity receptor for hepatitis B and D viruses. This study shows that TLC rapidly accumulates in NTCP-expressing hepatoma cells and mediates long-lasting trans-inhibition of NTCP's transporter and receptor function via an intracellularly accessible domain, without substantially affecting its membrane expression. This domain is a promising novel NTCP target site for pharmacological long-acting HBV/HDV entry inhibitors.


Subject(s)
Hepatitis B virus/drug effects , Hepatitis B/drug therapy , Hepatitis D/drug therapy , Hepatocytes/drug effects , Organic Anion Transporters, Sodium-Dependent/pharmacology , Symporters/pharmacology , Animals , Bile Acids and Salts/metabolism , Hepatitis B/metabolism , Hepatocytes/metabolism , Rats , Receptors, Virus/drug effects , Receptors, Virus/metabolism
5.
Int J Mol Sci ; 22(1)2020 Dec 22.
Article in English | MEDLINE | ID: mdl-33375004

ABSTRACT

BACKGROUND: The muscarinic receptor antagonist trospium chloride (TCl) is used for pharmacotherapy of the overactive bladder syndrome. TCl is a hydrophilic positively charged drug. Therefore, it has low permeability through biomembranes and requires drug transporters for distribution and excretion. In humans, the organic cation transporters OCT1 and OCT2 and the multidrug and toxin extrusion MATE1 and MATE2-K carriers showed TCl transport. However, their individual role for distribution and excretion of TCl is unclear. Knockout mouse models lacking mOct1/mOct2 or mMate1 might help to clarify their role for the overall pharmacokinetics of TCl. METHOD: In preparation of such experiments, TCl transport was analyzed in HEK293 cells stably transfected with the mouse carriers mOct1, mOct2, mMate1, and mMate2, respectively. RESULTS: Mouse mOct1, mOct2, and mMate1 showed significant TCl transport with Km values of 58.7, 78.5, and 29.3 µM, respectively. In contrast, mMate2 did not transport TCl but showed MPP+ transport with Km of 60.0 µM that was inhibited by the drugs topotecan, acyclovir, and levofloxacin. CONCLUSION: TCl transport behavior as well as expression pattern were quite similar for the mouse carriers mOct1, mOct2, and mMate1 compared to their human counterparts.


Subject(s)
Benzilates/metabolism , Catecholamine Plasma Membrane Transport Proteins/metabolism , Nortropanes/metabolism , Organic Cation Transport Proteins/metabolism , Organic Cation Transporter 2/metabolism , Animals , Benzilates/pharmacokinetics , Biological Transport , Catecholamine Plasma Membrane Transport Proteins/genetics , HEK293 Cells , Humans , Kinetics , Mice, Inbred C57BL , Mice, Knockout , Muscarinic Antagonists/metabolism , Muscarinic Antagonists/pharmacokinetics , Nortropanes/pharmacokinetics , Organic Cation Transport Proteins/genetics , Organic Cation Transporter 2/genetics
6.
Sci Rep ; 10(1): 14018, 2020 08 20.
Article in English | MEDLINE | ID: mdl-32820202

ABSTRACT

Overexpression of single genes in mammalian cells is widely used to investigate protein function in basic and applied biosciences and in drug research. A better understanding of interactions of two proteins is an important next step in the advancement of our understanding of complex biological systems. However, simultaneous and robust overexpression of two or more genes is challenging. The Flp-In system integrates a vector into cell lines at a specific genomic locus, but has not been used for integration of more than one gene. Here we present a modification of the Flp-In system that enables the simultaneous targeted integration of two genes. We describe the modification and generation of the vectors required and give the complete protocol for transfection and validation of correct genomic integration and expression. We also provide results on the stability and reproducibility, and we functionally validated this approach with a pharmacologically relevant combination of a membrane transporter facilitating drug uptake and an enzyme mediating drug metabolism.


Subject(s)
Gene Expression , Transfection/methods , Cytochrome P-450 CYP2C19/genetics , Flow Cytometry , Genetic Vectors , HEK293 Cells , Humans , Octamer Transcription Factor-1/genetics , Polymerase Chain Reaction/methods , Promoter Regions, Genetic , Proof of Concept Study , Reproducibility of Results
7.
PLoS One ; 13(6): e0199200, 2018.
Article in English | MEDLINE | ID: mdl-29912972

ABSTRACT

The hepatic Na+/taurocholate co-transporting polypeptide (NTCP in man, Ntcp in animals) is the high-affinity receptor for the hepatitis B (HBV) and hepatitis D (HDV) viruses. Species barriers for human HBV/HDV within the order Primates were previously attributed to Ntcp sequence variations that disable virus-receptor interaction. However, only a limited number of primate Ntcps have been analysed so far. In the present study, a total of 11 Ntcps from apes, Old and New World monkeys were cloned and expressed in vitro to characterise their interaction with HBV and HDV. All Ntcps showed intact bile salt transport. Human NTCP as well as the Ntcps from the great apes chimpanzee and orangutan showed transport-competing binding of HBV derived myr-preS1-peptides. In contrast, all six Ntcps from the group of Old World monkeys were insensitive to HBV myr-preS1-peptide binding and HBV/HDV infection. This is basically predetermined by the amino acid arginine at position 158 of all studied Old World monkey Ntcps. An exchange from arginine to glycine (as present in humans and great apes) at this position (R158G) alone was sufficient to achieve full transport-competing HBV myr-preS1-peptide binding and susceptibility for HBV/HDV infection. New World monkey Ntcps showed higher sequence heterogeneity, but in two cases with 158G showed transport-competing HBV myr-preS1-peptide binding, and in one case (Saimiri sciureus) even susceptibility for HBV/HDV infection. In conclusion, amino acid position 158 of NTCP/Ntcp is sufficient to discriminate between the HBV/HDV susceptible group of humans and great apes (158G) and the non-susceptible group of Old World monkeys (158R). In the case of the phylogenetically more distant New World monkey Ntcps amino acid 158 plays a significant, but not exclusive role.


Subject(s)
Hepatitis B virus/physiology , Hepatitis B/veterinary , Organic Anion Transporters, Sodium-Dependent/metabolism , Symporters/metabolism , Animals , Callithrix/genetics , Chlorocebus aethiops/genetics , Cloning, Molecular , HEK293 Cells , Hep G2 Cells , Hepatitis B/transmission , Humans , Macaca/genetics , Macaca fascicularis/genetics , Macaca mulatta/genetics , Organic Anion Transporters, Sodium-Dependent/genetics , Pan troglodytes/genetics , Papio anubis/genetics , Papio hamadryas/genetics , Pongo abelii/genetics , Saguinus/genetics , Saimiri/genetics , Sequence Alignment , Symporters/genetics , Transfection
SELECTION OF CITATIONS
SEARCH DETAIL
...