Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Animals (Basel) ; 14(11)2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38891718

ABSTRACT

Fibroblast growth factor (FGF)-23 is a phosphaturic hormone. An association between increasing FGF-23 levels and progression of chronic kidney disease (CKD) was documented in cats, dogs, and humans. The information regarding reference intervals (RIs) of FGF-23 in cats is limited. We aimed to establish RIs in a large cohort of clinically healthy cats and to investigate correlations with sex and age. A total of 118 cats with unremarkable complete blood count and serum chemistry profile were included. Clinically sick cats, cats with concurrent diseases, suspicion of CKD, or receiving renal diets were excluded. FGF-23 concentrations were measured with the FGF-23 ELISA Kit. RIs were calculated using the reference interval advisor software 2.1 (Microsoft Excel). FGF-23 concentrations were correlated with sex and age. The RI for FGF-23 concentrations spanned 85.8 to 387.0 pg/mL (90% confidence interval: lower limit 40.5 to 103.9 pg/mL, upper limit: 354.6 to 425.0 pg/mL). No significant relationships (r2 = 0.044) were detected with age (p = 0.081) or sex (p = 0.191). Other studies of the same diagnostic assay calculated RIs of 56 to 700 pg/mL in 79 cats and <336 pg/mL in 108 cats, and in concordance with the present study, did not detect any correlation with sex or age.

2.
Vet Med Sci ; 10(3): e1409, 2024 05.
Article in English | MEDLINE | ID: mdl-38516822

ABSTRACT

BACKGROUND: After submaximal exercise, blood values of eventing horses show physiological reactions. OBJECTIVES: This prospective longitudinal study investigated blood parameters in 20 elite eventing horses before and after two-four-star cross-country rides. METHODS: Using a mixed model adjusting for plasma volume shift, we assessed exercise-dependent parameters and compared blood values with reference ranges for healthy horses at rest. RESULTS: Following exercise, cortisol, triiodothyronine (T3) and thyroxine (T4) showed short-term increases, and superoxide-dismutase showed a small short-term increase. Hepatic values showed short-term (haemoglobin [HGB], globulins) or sustained increases (bilirubin, glutamate dehydrogenase, alanine aminotransferase). Digestion-related parameters showed small short-term increases (α-amylase, triglycerides) or decreases (cholesterol, DGGR-lipase), apparent through plasma shift adjustment. Zinc decreased in the short term, and iron showed a delayed decrease. White blood cell count increased persistently after training, whereas serum amyloid A remained unchanged. CONCLUSIONS: Exercised eventing horses had consistently elevated HGB and cortisol levels 10 and 30 min after submaximal exercise, exceeding the reference ranges for healthy horses at rest. Exercise activates the hypothalamic-pituitary-adrenocortical and hypothalamic-pituitary-thyroid axes. Antioxidant activity was observed. Increased energy requirements led to the mobilization of energy reserves, and a sustained increase in liver enzymes indicated hepatocellular injury. Mild haemolysis suggested increased muscle metabolism, whereas signs of inflammation were subtle. Further research is needed to identify which horses deviate from mean values.


Subject(s)
Horse Diseases , Plasma Volume , Animals , Horses , Hydrocortisone , Inflammation/veterinary , Longitudinal Studies , Oxidative Stress , Prospective Studies
3.
Animals (Basel) ; 13(19)2023 Oct 05.
Article in English | MEDLINE | ID: mdl-37835716

ABSTRACT

Horses competing in cross-country tests are subjected to high physical demands. Within the scope of this prospective longitudinal study, blood values of 20 elite eventing horses were examined before and after two- to four-star cross-country rides. The aim was to find out whether blood-based markers for skeletal muscle and cardiac muscle function change after cross-country exercise. Parameters that provide information about fluid balance, muscle enzymes, metabolites and cardiac muscle-specific markers were investigated. We developed an approach to eliminate the concentration changes caused by reduced plasma volume. Parameters were measured pre, 10 and 30 min post exercise and the next morning and were evaluated using a mixed model. Thirty minutes after exercise, most parameter concentrations changed in an exercise-dependent manner. The next morning, most exercise-related markers recovered rapidly, while creatine kinase (CK) (26% increase; p = 0.008) and lactate dehydrogenase (LDH) (15% increase; p < 0.001) showed a declining but sustained increase. Cardiac troponin I (cTnI) increased above the reference range in 40 of the 55 rides (73%) and in 18 of 20 horses in the morning after exercise.

4.
Animals (Basel) ; 13(20)2023 Oct 13.
Article in English | MEDLINE | ID: mdl-37893926

ABSTRACT

Fibroblast growth factor-23 (FGF-23) is a phosphaturic hormone used to monitor chronic kidney disease (CKD) in humans. The aims of this study were (1) to determine the intra- and interassay precision of the FGF-23 concentrations in dogs as measured via the Kainos ELISA FGF-23 kit, (2) to calculate a reference interval, and (3) to assess the correlation of the FGF-23 concentration with the hematological and biochemical parameters. The coefficient of variation was below 15% for both the intra- and interassay precision, indicating good reproducibility. The reference interval ranged between 95.8 (90% confidence interval: 44.6; 139.2) and 695.1 pg/mL (598.7; 799.1) based on 136 clinically healthy dogs, classified as such according to the information of treating veterinarians as well as the unremarkable results of hematology and biochemistry. The FGF-23 concentration differed significantly between dogs aged <9 and ≥9 years (p = 0.045). Four groups of 10 dogs each were retrospectively formed based on the creatinine concentration classification according to the IRIS staging. Correlation was the strongest for the renal parameters. Statistically significant differences in the FGF-23 concentration were demonstrated between the study groups I and III (p < 0.001), I and IV (p < 0.001), and II and IV (p = 0.005). There was a trend for a rising FGF-23 concentration in older dogs. Due to the wide reference interval, diagnostic cut-offs and/or subject-based FGF-23 reference values in each dog are needed for monitoring and clinical interpretation.

5.
Viruses ; 14(6)2022 06 09.
Article in English | MEDLINE | ID: mdl-35746730

ABSTRACT

Na+/taurocholate cotransporting polypeptide (NTCP, gene symbol SLC10A1) is a hepatic bile acid uptake carrier participating in the enterohepatic circulation of bile acids. Apart from its transporter function, NTCP acts as the high-affinity liver-specific receptor for the hepatitis B virus (HBV), which attaches via its preS1-peptide domain of the large surface protein to NTCP, subsequently leading to endocytosis of the virus/NTCP-receptor complex. Although the process of NTCP-dependent HBV infection of hepatocytes has received much attention over the last decade, the precise molecular sites of the virus/NTCP interaction have not been fully identified. Inspection of the primary protein sequence of human NTCP revealed 139YIYSRGIY146 as a highly conserved tyrosine-rich motif. To study the role of Y139, Y141 and Y146 amino acids in NTCP biology, the aforementioned residues were substituted with alanine, phenylalanine or glutamate (mimicking phosphorylation) using site-directed mutagenesis. Similar to wt NTCP, the Y139A, Y141A, Y146A, Y141F, Y146F, and Y146E mutants were expressed at the plasma membrane of HEK293 cells and exhibited intact bile acid transport function. Y146A, Y146E, and Y146F demonstrated transport kinetics comparable to wild-type NTCP with Km values of 57.3-112.4 µM and Vmax values of 6683-7579 pmol/mg protein/min. Only Y141E was transport deficient, most likely due to an intracellular accumulation of the mutant protein. Most importantly, Y146A and Y146E mutation completely abrogated binding of the viral preS1-peptide to NTCP, while the Y146F mutant of NTCP showed some residual binding competence for preS1. Consequently, the NTCP mutants Y146A and Y146E, when expressed in HepG2 hepatoma cells, showed complete loss of susceptibility for in vitro HBV infection. In conclusion, tyrosine 146, and to some extent tyrosine 141, both belonging to the tyrosine-rich motif 139YIYSRGIY146 of human NTCP, are newly identified amino acid residues that play an essential role in the interaction of HBV with its receptor NTCP and, thus, in the process of virus entry into hepatocytes.


Subject(s)
Hepatitis B virus , Hepatitis B , Bile Acids and Salts/metabolism , HEK293 Cells , Hep G2 Cells , Hepatitis B virus/physiology , Hepatocytes , Humans , Receptors, Virus/metabolism , Taurocholic Acid , Tyrosine/metabolism , Virus Internalization
6.
Viruses ; 14(4)2022 03 30.
Article in English | MEDLINE | ID: mdl-35458456

ABSTRACT

The Na+/taurocholate co-transporting polypeptide (NTCP, gene symbol SLC10A1) is both a physiological bile acid transporter and the high-affinity hepatic receptor for the hepatitis B and D viruses (HBV/HDV). Virus entry via endocytosis of the virus/NTCP complex involves co-factors, but this process is not fully understood. As part of the innate immunity, interferon-induced transmembrane proteins (IFITM) 1-3 have been characterized as virus entry-restricting factors for many viruses. The present study identified IFITM3 as a novel protein-protein interaction (PPI) partner of NTCP based on membrane yeast-two hybrid and co-immunoprecipitation experiments. Surprisingly, IFITM3 knockdown significantly reduced in vitro HBV infection rates of NTCP-expressing HuH7 cells and primary human hepatocytes (PHHs). In addition, HuH7-NTCP cells showed significantly lower HDV infection rates, whereas infection with influenza A virus was increased. HBV-derived myr-preS1 peptide binding to HuH7-NTCP cells was intact even under IFITM3 knockdown, suggesting that IFITM3-mediated HBV/HDV infection enhancement occurs in a step subsequent to the viral attachment to NTCP. In conclusion, IFITM3 was identified as a novel NTCP co-factor that significantly affects in vitro infection with HBV and HDV in NTCP-expressing hepatoma cells and PHHs. While there is clear evidence for a direct PPI between IFITM3 and NTCP, the specific mechanism by which this PPI facilitates the infection process remains to be identified in future studies.


Subject(s)
Hepatitis B , Symporters , Hep G2 Cells , Hepatitis B virus/physiology , Hepatitis Delta Virus/genetics , Hepatocytes , Humans , Membrane Proteins/genetics , Membrane Proteins/metabolism , Organic Anion Transporters, Sodium-Dependent/genetics , Organic Anion Transporters, Sodium-Dependent/metabolism , RNA-Binding Proteins/metabolism , Symporters/genetics , Symporters/metabolism , Virus Internalization
7.
Stem Cells Int ; 2021: 8284690, 2021.
Article in English | MEDLINE | ID: mdl-34659420

ABSTRACT

Mesenchymal stromal cells (MSC) represent a promising therapeutic tool for tendon regeneration. Their tenogenic differentiation is crucial for tissue engineering approaches and may support their beneficial effects after cell transplantation in vivo. The transforming growth factor (TGF)-ß, signalling via intracellular Smad molecules, is a potent paracrine mediator of tenogenic induction. Moreover, scaffold topography or tendon matrix components induced tenogenesis via activation of the Rho/ROCK cascade, which, however, is also involved in pathological adaptations in extracellular matrix pathologies. The aim of this study was to investigate the interplay of Rho/ROCK and TGF-ß3/Smad signalling in tenogenic differentiation in both human and equine MSC. Primary equine and human MSC isolated from adipose tissue were cultured as monolayers or on tendon-derived decellularized scaffolds to evaluate the influence of the ROCK inhibitor Y-27632 on TGF-ß3-induced tenogenic differentiation. The MSC were incubated with and without TGF-ß3 (10 ng/ml), Y-27632 (10 µM), or both. On day 1 and day 3, the signalling pathway of TGF-ß and the actin cytoskeleton were visualized by Smad 2/3 and phalloidin staining, and gene expression of signalling molecules and tendon markers was assessed. ROCK inhibition was confirmed by disruption of the actin cytoskeleton. Activation of Smad 2/3 with nuclear translocation was evident upon TGF-ß3 stimulation. Interestingly, this effect was most pronounced with additional ROCK inhibition in both species (p < 0.05 in equine MSC). In line with that, the tendon marker scleraxis showed the strongest upregulation when TGF-ß3 and ROCK inhibition were combined (p < 0.05 in human MSC). The regulation pattern of tendon extracellular matrix components and the signalling molecules TGF-ß3 and Smad 8 showed differences between human and equine MSC. The obtained results showed that ROCK inhibition promotes the TGF-ß3/Smad 2/3 axis, with possible implications for future MSC priming regimes in tendon therapy.

8.
Viruses ; 13(8)2021 07 29.
Article in English | MEDLINE | ID: mdl-34452354

ABSTRACT

The hepatic bile acid transporter Na+/taurocholate co-transporting polypeptide (NTCP) was identified in 2012 as the high-affinity hepatic receptor for the hepatitis B and D viruses (HBV/HDV). Since then, this carrier has emerged as promising drug target for HBV/HDV virus entry inhibitors, but the synthetic peptide Hepcludex® of high molecular weight is the only approved HDV entry inhibitor so far. The present study aimed to identify small molecules as novel NTCP inhibitors with anti-viral activity. A ligand-based bioinformatic approach was used to generate and validate appropriate pharmacophore and QSAR (quantitative structure-activity relationship) models. Half-maximal inhibitory concentrations (IC50) for binding inhibition of the HBV/HDV-derived preS1 peptide (as surrogate parameter for virus binding to NTCP) were determined in NTCP-expressing HEK293 cells for 150 compounds of different chemical classes. IC50 values ranged from 2 µM up to >1000 µM. The generated pharmacophore and QSAR models were used for virtual screening of drug-like chemicals from the ZINC15 database (~11 million compounds). The 20 best-performing compounds were then experimentally tested for preS1-peptide binding inhibition in NTCP-HEK293 cells. Among them, four compounds were active and revealed experimental IC50 values for preS1-peptide binding inhibition of 9, 19, 20, and 35 µM, which were comparable to the QSAR-based predictions. All these compounds also significantly inhibited in vitro HDV infection of NTCP-HepG2 cells, without showing any cytotoxicity. The best-performing compound in all assays was ZINC000253533654. In conclusion, the present study demonstrates that virtual compound screening based on NTCP-specific pharmacophore and QSAR models can predict novel active hit compounds for the development of HBV/HDV entry inhibitors.


Subject(s)
Antiviral Agents/pharmacology , Hepatitis B virus/drug effects , Hepatitis Delta Virus/drug effects , User-Computer Interface , Virus Internalization/drug effects , Drug Discovery , HEK293 Cells , Hep G2 Cells , Hepatocytes/virology , Humans , Inhibitory Concentration 50 , Organic Anion Transporters, Sodium-Dependent , Quantitative Structure-Activity Relationship , Virus Attachment/drug effects
9.
Front Mol Biosci ; 8: 699443, 2021.
Article in English | MEDLINE | ID: mdl-34239896

ABSTRACT

Homodimerization is essential for plasma membrane sorting of the liver bile acid transporter NTCP and its function as Hepatitis B/D Virus (HBV/HDV) receptor. However, the protein domains involved in NTCP dimerization are unknown. NTCP bears two potential GXXXG/A dimerization motifs in its transmembrane domains (TMDs) 2 and 7. The present study aimed to analyze the role of these GXXXG/A motifs for the sorting, function, and dimerization of NTCP. The NTCP mutants G60LXXXA64L (TMD2), G233LXXXG237L (TMD7) and a double mutant were generated and analyzed for their interaction with wild-type NTCP using a membrane-based yeast-two hybrid system (MYTH) and co-immunoprecipitation (co-IP). In the MYTH system, the TMD2 and TMD7 mutants showed significantly lower interaction with the wild-type NTCP. In transfected HEK293 cells, membrane expression and bile acid transport activity were slightly reduced for the TMD2 mutant but were completely abolished for the TMD7 and the TMD2/7 mutants, while co-IP experiments still showed intact protein-protein interactions. Susceptibility for in vitro HBV infection in transfected HepG2 cells was reduced to 50% for the TMD2 mutant, while the TMD7 mutant was not susceptible for HBV infection at all. We conclude that the GXXXG/A motifs in TMD2 and even more pronounced in TMD7 are important for proper folding and sorting of NTCP, and so indirectly affect glycosylation, homodimerization, and bile acid transport of NTCP, as well as its HBV/HDV receptor function.

10.
Front Mol Biosci ; 8: 689757, 2021.
Article in English | MEDLINE | ID: mdl-34079822

ABSTRACT

Three carriers of the solute carrier family SLC10 have been functionally characterized so far. Na+/taurocholate cotransporting polypeptide NTCP is a hepatic bile acid transporter and the cellular entry receptor for the hepatitis B and D viruses. Its intestinal counterpart, apical sodium-dependent bile acid transporter ASBT, is responsible for the reabsorption of bile acids from the intestinal lumen. In addition, sodium-dependent organic anion transporter SOAT specifically transports sulfated steroid hormones, but not bile acids. All three carriers show high sequence homology, but significant differences in substrate recognition that makes a systematic structure-activity comparison attractive in order to define the protein domains involved in substrate binding and transport. By using stably transfected NTCP-, ASBT-, and SOAT-HEK293 cells, systematic comparative transport and inhibition experiments were performed with more than 20 bile acid and steroid substrates as well as different inhibitors. Taurolithocholic acid (TLC) was identified as the first common substrate of NTCP, ASBT and SOAT with K m values of 18.4, 5.9, and 19.3 µM, respectively. In contrast, lithocholic acid was the only bile acid that was not transported by any of these carriers. Troglitazone, BSP and erythrosine B were identified as pan-SLC10 inhibitors, whereas cyclosporine A, irbesartan, ginkgolic acid 17:1, and betulinic acid only inhibited NTCP and SOAT, but not ASBT. The HBV/HDV-derived myr-preS1 peptide showed equipotent inhibition of the NTCP-mediated substrate transport of taurocholic acid (TC), dehydroepiandrosterone sulfate (DHEAS), and TLC with IC50 values of 182 nM, 167 nM, and 316 nM, respectively. In contrast, TLC was more potent to inhibit myr-preS1 peptide binding to NTCP with IC50 of 4.3 µM compared to TC (IC50 = 70.4 µM) and DHEAS (IC50 = 52.0 µM). Based on the data of the present study, we propose several overlapping, but differently active binding sites for substrates and inhibitors in the carriers NTCP, ASBT, SOAT.

11.
Viruses ; 13(4)2021 04 12.
Article in English | MEDLINE | ID: mdl-33921515

ABSTRACT

Identification of Na+/taurocholate co-transporting polypeptide (NTCP) as high-affinity hepatic entry receptor for the Hepatitis B and D viruses (HBV/HDV) opened the field for target-based development of cell-entry inhibitors. However, most of the HBV/HDV entry inhibitors identified so far also interfere with the physiological bile acid transporter function of NTCP. The present study aimed to identify more virus-selective inhibitors of NTCP by screening of 87 propanolamine derivatives from the former development of intestinal bile acid reabsorption inhibitors (BARIs), which interact with the NTCP-homologous intestinal apical sodium-dependent bile acid transporter (ASBT). In NTCP-HEK293 cells, the ability of these compounds to block the HBV/HDV-derived preS1-peptide binding to NTCP (virus receptor function) as well as the taurocholic acid transport via NTCP (bile acid transporter function) were analyzed in parallel. Hits were subsequently validated by performing in vitro HDV infection experiments in NTCP-HepG2 cells. The most potent compounds S985852, A000295231, and S973509 showed in vitro anti-HDV activities with IC50 values of 15, 40, and 70 µM, respectively, while the taurocholic acid uptake inhibition occurred at much higher IC50 values of 24, 780, and 490 µM, respectively. In conclusion, repurposing of compounds from the BARI class as novel HBV/HDV entry inhibitors seems possible and even enables certain virus selectivity based on structure-activity relationships.


Subject(s)
Drug Repositioning , Hepatitis B , Hepatitis D , Hepatitis Delta Virus/drug effects , Viral Fusion Protein Inhibitors/administration & dosage , Virus Internalization/drug effects , HEK293 Cells , Hep G2 Cells , Hepatitis B/drug therapy , Hepatitis B/virology , Hepatitis B virus/drug effects , Hepatitis D/drug therapy , Hepatitis D/virology , Humans , Taurocholic Acid/antagonists & inhibitors
12.
Sci Rep ; 10(1): 21772, 2020 12 10.
Article in English | MEDLINE | ID: mdl-33303817

ABSTRACT

Current treatment options against hepatitis B and D virus (HBV/HDV) infections have only limited curative effects. Identification of Na+/taurocholate co-transporting polypeptide (NTCP) as the high-affinity hepatic receptor for both viruses in 2012 enables target-based development of HBV/HDV cell-entry inhibitors. Many studies already identified appropriate NTCP inhibitors. However, most of them interfere with NTCP's physiological function as a hepatic bile acid transporter. To overcome this drawback, the present study aimed to find compounds that specifically block HBV/HDV binding to NTCP without affecting its transporter function. A novel assay was conceptualized to screen for both in parallel; virus binding to NTCP (measured via binding of a preS1-derived peptide of the large HBV/HDV envelope protein) and bile acid transport via NTCP. Hits were subsequently validated by in vitro HDV infection studies using NTCP-HepG2 cells. Derivatives of the birch-derived pentacyclic lupane-type triterpenoid betulin revealed clear NTCP inhibitory potency and selectivity for the virus receptor function of NTCP. Best performing compounds in both aspects were 2, 6, 19, and 25. In conclusion, betulin derivatives show clear structure-activity relationships for potent and selective inhibition of the HBV/HDV virus receptor function of NTCP without tackling its physiological bile acid transport function and therefore are promising drug candidates.


Subject(s)
Hepatitis B virus/physiology , Hepatitis Delta Virus/physiology , Organic Anion Transporters, Sodium-Dependent/antagonists & inhibitors , Symporters/antagonists & inhibitors , Triterpenes/pharmacology , Virus Internalization/drug effects , Bile Acids and Salts/metabolism , Hep G2 Cells , Hepatitis B virus/metabolism , Hepatitis Delta Virus/metabolism , Humans , Organic Anion Transporters, Sodium-Dependent/metabolism , Organic Anion Transporters, Sodium-Dependent/physiology , Receptors, Virus , Structure-Activity Relationship , Symporters/metabolism , Symporters/physiology
13.
Sci Rep ; 10(1): 7248, 2020 04 29.
Article in English | MEDLINE | ID: mdl-32350310

ABSTRACT

SLC10A7 represents an orphan member of the Solute Carrier Family SLC10. Recently, mutations in the human SLC10A7 gene were associated with skeletal dysplasia, amelogenesis imperfecta, and decreased bone mineral density. However, the exact molecular function of SLC10A7 and the mechanisms underlying these pathologies are still unknown. For this reason, the role of SLC10A7 on intracellular calcium signaling was investigated. SLC10A7 protein expression was negatively correlated with store-operated calcium entry (SOCE) via the plasma membrane. Whereas SLC10A7 knockout HAP1 cells showed significantly increased calcium influx after thapsigargin, ionomycin and ATP/carbachol treatment, SLC10A7 overexpression reduced this calcium influx. Intracellular Ca2+ levels were higher in the SLC10A7 knockout cells and lower in the SLC10A7-overexpressing cells. The SLC10A7 protein co-localized with STIM1, Orai1, and SERCA2. Most of the previously described human SLC10A7 mutations had no effect on the calcium influx and thus were confirmed to be functionally inactive. In the present study, SLC10A7 was established as a novel negative regulator of intracellular calcium signaling that most likely acts via STIM1, Orai1 and/or SERCA2 inhibition. Based on this, SLC10A7 is suggested to be named as negative regulator of intracellular calcium signaling (in short: RCAS).


Subject(s)
Calcium Signaling , Organic Anion Transporters, Sodium-Dependent/metabolism , Symporters/metabolism , Amino Acid Sequence , Calcium/metabolism , Cell Line , Humans , Mutation , Neoplasm Proteins/metabolism , ORAI1 Protein/metabolism , Organic Anion Transporters, Sodium-Dependent/chemistry , Organic Anion Transporters, Sodium-Dependent/genetics , RNA, Messenger/genetics , Sarcoplasmic Reticulum Calcium-Transporting ATPases/metabolism , Stromal Interaction Molecule 1/metabolism , Symporters/chemistry , Symporters/genetics
14.
Biol Chem ; 400(10): 1371-1384, 2019 09 25.
Article in English | MEDLINE | ID: mdl-31256060

ABSTRACT

The solute carrier family SLC10 consists of seven members, including the bile acid transporters Na+/taurocholate co-transporting polypeptide (NTCP) and apical sodium-dependent bile acid transporter (ASBT), the steroid sulfate transporter SOAT as well as four orphan carriers (SLC10A3, SLC10A4, SLC10A5 and SLC10A7). Previously, homodimerization of NTCP, ASBT and SOAT was described and there is increasing evidence that carrier oligomerization is an important regulatory factor for protein sorting and transport function. In the present study, homo- and heterodimerization were systematically analyzed among all SLC10 carriers (except for SLC10A3) using the yeast-two-hybrid membrane protein system. Strong homodimerization occurred for NTCP/NTCP, ASBT/ASBT and SLC10A7/SLC10A7. Heterodimerization was observed for most of the SLC10 carrier combinations. Heterodimerization of NTCP was additionally investigated by co-localization of NTCP-GFP and NTCP-mScarlet with respective SLC10 carrier constructs. NTCP co-localized with SLC10A4, SLC10A5, SOAT and SLC10A7. This co-localization was most pronounced for SLC10A4 and was additionally confirmed by co-immunoprecipitation. Interestingly, SLC10 carrier co-expression decreased the taurocholate transport function of NTCP for most of the analyzed constructs, indicating that SLC10 carrier heterodimerization is of functional relevance. In conclusion, homo- and heterodimerization is a common feature of the SLC10 carriers. The relevance of this finding for regulation and transport function of the SLC10 carriers in vivo needs further investigation.


Subject(s)
Organic Anion Transporters, Sodium-Dependent/chemistry , Animals , Biological Transport , Dimerization , Humans , Organic Anion Transporters, Sodium-Dependent/metabolism , Sodium/metabolism
15.
J Hepatol ; 68(6): 1114-1122, 2018 06.
Article in English | MEDLINE | ID: mdl-29428874

ABSTRACT

BACKGROUND & AIMS: All known hepatitis B virus (HBV) genotypes occur in humans and hominoid Old World non-human primates (NHPs). The divergent woolly monkey HBV (WMHBV) forms another orthohepadnavirus species. The evolutionary origins of HBV are unclear. METHODS: We analysed sera from 124 Brazilian monkeys collected during 2012-2016 for hepadnaviruses using molecular and serological tools, and conducted evolutionary analyses. RESULTS: We identified a novel orthohepadnavirus species in capuchin monkeys (capuchin monkey hepatitis B virus [CMHBV]). We found CMHBV-specific antibodies in five animals and high CMHBV concentrations in one animal. Non-inflammatory, probably chronic infection was consistent with an intact preCore domain, low genetic variability, core deletions in deep sequencing, and no elevated liver enzymes. Cross-reactivity of antisera against surface antigens suggested antigenic relatedness of HBV, CMHBV, and WMHBV. Infection-determining CMHBV surface peptides bound to the human HBV receptor (human sodium taurocholate co-transporting polypeptide), but preferentially interacted with the capuchin monkey receptor homologue. CMHBV and WMHBV pseudotypes infected human hepatoma cells via the human sodium taurocholate co-transporting polypeptide, and were poorly neutralised by HBV vaccine-derived antibodies, suggesting that cross-species infections may be possible. Ancestral state reconstructions and sequence distance comparisons associated HBV with humans, whereas primate hepadnaviruses as a whole were projected to NHP ancestors. Co-phylogenetic analyses yielded evidence for co-speciation of hepadnaviruses and New World NHP. Bayesian hypothesis testing yielded strong support for an association of the HBV stem lineage with hominoid ancestors. Neither CMHBV nor WMHBV was likely the ancestor of the divergent human HBV genotypes F/H found in American natives. CONCLUSIONS: Our data suggest ancestral co-speciation of hepadnaviruses and NHP, and an Old World origin of the divergent HBV genotypes F/H. The identification of a novel primate hepadnavirus offers new perspectives for urgently needed animal models of chronic hepatitis B. LAY SUMMARY: The origins of HBV are unclear. The new orthohepadnavirus species from Brazilian capuchin monkeys resembled HBV in elicited infection patterns and could infect human liver cells using the same receptor as HBV. Evolutionary analyses suggested that primate HBV-related viruses might have emerged in African ancestors of New World monkeys millions of years ago. HBV was associated with hominoid primates, including humans and apes, suggesting evolutionary origins of HBV before the formation of modern humans. HBV genotypes found in American natives were divergent from those found in American monkeys, and likely introduced along prehistoric human migration. Our results elucidate the evolutionary origins and dispersal of primate HBV, identify a new orthohepadnavirus reservoir, and enable new perspectives for animal models of hepatitis B.


Subject(s)
Cebus/virology , Evolution, Molecular , Hepatitis B virus/genetics , Hepatitis B virus/isolation & purification , Orthohepadnavirus/genetics , Orthohepadnavirus/isolation & purification , Amino Acid Sequence , Animals , Bayes Theorem , Brazil , Genetic Speciation , Genome, Viral , Hepatitis B/veterinary , Hepatitis B/virology , Hepatitis B Antigens/chemistry , Hepatitis B Antigens/genetics , Hepatitis B Antigens/immunology , Hepatitis B virus/classification , Host Microbial Interactions/genetics , Humans , Models, Genetic , Monkey Diseases/virology , Organic Anion Transporters, Sodium-Dependent/physiology , Orthohepadnavirus/classification , Phylogeny , Primates/virology , Receptors, Virus/physiology , Symporters/physiology , Virus Internalization
SELECTION OF CITATIONS
SEARCH DETAIL
...