Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 172
Filter
1.
Cell ; 187(15): 3829-3853, 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-39059360

ABSTRACT

For more than a century, physicians have searched for ways to pharmacologically reduce excess body fat. The tide has finally turned with recent advances in biochemically engineered agonists for the receptor of glucagon-like peptide-1 (GLP-1) and their use in GLP-1-based polyagonists. These polyagonists reduce body weight through complementary pharmacology by incorporating the receptors for glucagon and/or the glucose-dependent insulinotropic polypeptide (GIP). In their most advanced forms, gut-hormone polyagonists achieve an unprecedented weight reduction of up to ∼20%-30%, offering a pharmacological alternative to bariatric surgery. Along with favorable effects on glycemia, fatty liver, and kidney disease, they also offer beneficial effects on the cardiovascular system and adipose tissue. These new interventions, therefore, hold great promise for the future of anti-obesity medications.


Subject(s)
Anti-Obesity Agents , Obesity , Humans , Obesity/drug therapy , Obesity/metabolism , Anti-Obesity Agents/therapeutic use , Anti-Obesity Agents/pharmacology , Animals , Glucagon-Like Peptide-1 Receptor/agonists , Glucagon-Like Peptide-1 Receptor/metabolism , Glucagon-Like Peptide 1/metabolism , Adipose Tissue/metabolism , Adipose Tissue/drug effects
2.
Mol Metab ; : 101992, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39019114

ABSTRACT

OBJECTIVES: We here assessed whether typical pathogens of laboratory mice affect the development of diet-induced obesity and glucose intolerance, and whether colonization affects the efficacy of the GLP-1R agonist liraglutide and of the GLP-1/GIP co-agonist MAR709 to treat obesity and diabetes. METHODS: Male C57BL/6J mice were experimentally infected with Helicobacter hepaticus, Rodentibacter pneumotropicus and Staphylococcus aureus and compared to a group of uninfected specific and opportunistic pathogen free (SOPF) mice. The development of diet-induced obesity and glucose intolerance was monitored over a period of 26 weeks. To study the influence of pathogens on drug treatment, mice were then subjected for 6 days daily treatment with either the GLP-1 receptor agonist liraglutide or the GLP-1/GIP co-agonist MAR709. RESULTS: Colonized mice did not differ from SOPF controls regarding HFD-induced body weight gain, food intake, body composition, glycemic control, or responsiveness to treatment with liraglutide or the GLP-1/GIP co-agonist MAR709. CONCLUSIONS: We conclude that the occurrence of H. hepaticus, R. pneumotropicus and S. aureus does neither affect the development of diet-induced obesity or type 2 diabetes, nor the efficacy of GLP-1-based drugs to decrease body weight and to improve glucose control in mice.

3.
Endocrinology ; 165(8)2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38889231

ABSTRACT

Thyroid hormone (TH) effects are mediated through TH receptors (TRs), TRα1, TRß1, and TRß2. The TRs bind to the DNA and regulate expression of TH target genes (canonical signaling). In addition, they mediate activation of signaling pathways (noncanonical signaling). Whether noncanonical TR action contributes to the spectrum of TH effects is largely unknown. The aim of this study was to attribute physiological effects to the TR isoforms and their canonical and noncanonical signaling. We conducted multiparameter phenotyping in male and female TR knockout mice (TRαKO, TRßKO), mice with disrupted canonical signaling due to mutations in the TR DNA binding domain (TRαGS, TRßGS), and their wild-type littermates. Perturbations in senses, especially hearing (mainly TRß with a lesser impact of TRα), visual acuity, retinal thickness (TRα and TRß), and in muscle metabolism (TRα) highlighted the role of canonical TR action. Strikingly, selective abrogation of canonical TR action often had little phenotypic consequence, suggesting that noncanonical TR action sufficed to maintain the wild-type phenotype for specific effects. For instance, macrocytic anemia, reduced retinal vascularization, or increased anxiety-related behavior were only observed in TRαKO but not TRαGS mice. Noncanonical TRα action improved energy utilization and prevented hyperphagia observed in female TRαKO mice. In summary, by examining the phenotypes of TRα and TRß knockout models alongside their DNA binding-deficient mutants and wild-type counterparts, we could establish that the noncanonical actions of TRα and TRß play a crucial role in modulating sensory, behavioral, and metabolic functions and, thus, contribute to the spectrum of physiological TH effects.


Subject(s)
Mice, Knockout , Phenotype , Thyroid Hormone Receptors alpha , Thyroid Hormone Receptors beta , Animals , Female , Male , Thyroid Hormone Receptors alpha/genetics , Thyroid Hormone Receptors alpha/metabolism , Thyroid Hormone Receptors beta/genetics , Thyroid Hormone Receptors beta/metabolism , Mice , Signal Transduction/genetics , Thyroid Hormones/metabolism , Mice, Inbred C57BL
4.
Trends Endocrinol Metab ; 35(7): 566-568, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38763780

ABSTRACT

Unimolecular co-agonists at the GLP-1/GIP receptors have recently achieved remarkable anti-obesogenic feats; yet, in a recent Phase 1 clinical trial, Véniant and colleagues report astounding body-weight loss, and an appreciable safety profile, in participants with obesity using the GLP-1R agonist/GIPR antagonist AMG 133.


Subject(s)
Glucagon-Like Peptide-1 Receptor , Obesity , Receptors, Gastrointestinal Hormone , Humans , Glucagon-Like Peptide-1 Receptor/agonists , Glucagon-Like Peptide-1 Receptor/metabolism , Receptors, Gastrointestinal Hormone/antagonists & inhibitors , Receptors, Gastrointestinal Hormone/metabolism , Obesity/metabolism , Peptides/pharmacology , Animals , Weight Loss/drug effects , Receptors, Glucagon/metabolism , Receptors, Glucagon/antagonists & inhibitors
5.
Nat Metab ; 6(5): 861-879, 2024 May.
Article in English | MEDLINE | ID: mdl-38565923

ABSTRACT

White adipocytes function as major energy reservoirs in humans by storing substantial amounts of triglycerides, and their dysfunction is associated with metabolic disorders; however, the mechanisms underlying cellular specialization during adipogenesis remain unknown. Here, we generate a spatiotemporal proteomic atlas of human adipogenesis, which elucidates cellular remodelling as well as the spatial reorganization of metabolic pathways to optimize cells for lipid accumulation and highlights the coordinated regulation of protein localization and abundance during adipocyte formation. We identify compartment-specific regulation of protein levels and localization changes of metabolic enzymes to reprogramme branched-chain amino acids and one-carbon metabolism to provide building blocks and reduction equivalents. Additionally, we identify C19orf12 as a differentiation-induced adipocyte lipid droplet protein that interacts with the translocase of the outer membrane complex of lipid droplet-associated mitochondria and regulates adipocyte lipid storage by determining the capacity of mitochondria to metabolize fatty acids. Overall, our study provides a comprehensive resource for understanding human adipogenesis and for future discoveries in the field.


Subject(s)
Adipogenesis , Proteomics , Humans , Proteomics/methods , Lipid Metabolism , Mitochondria/metabolism , Lipid Droplets/metabolism , Proteome/metabolism , Adipocytes/metabolism , Cell Differentiation
6.
Diabetes Ther ; 15(5): 1069-1084, 2024 May.
Article in English | MEDLINE | ID: mdl-38573467

ABSTRACT

The discovery of long-acting incretin receptor agonists represents a major stride forward in tackling the dual epidemic of obesity and diabetes. Here we outline the evolution of incretin-based pharmacotherapy, from exendin-4 to the discovery of the multi-incretin hormone receptor agonists that look set to be our next step toward curing diabetes and obesity. We discuss the multiagonists currently in clinical trials and the improvement in efficacy each new generation of these drugs bring. The success of these agents in preclinical models and clinical trials suggests a promising future for multiagonists in the treatment of metabolic diseases, with the most recent glucose-dependent insulinotropic peptide receptor:glucagon-like peptide 1 receptor:glucagon receptor (GIPR:GLP-1R:GCGR) triagonists rivaling the efficacy of bariatric surgery. However, further research is needed to fully understand how these therapies exert their effect on body weight and in the last section we cover open questions about the potential mechanisms of multiagonist drugs, and the understanding of how gut-brain communication can be leveraged to achieve sustained body weight loss without adverse effects.

7.
Front Mol Biosci ; 11: 1347397, 2024.
Article in English | MEDLINE | ID: mdl-38516184

ABSTRACT

Glycosylphosphatidylinositol-anchored proteins (GPI-APs) are anchored at the outer phospholipid layer of eukaryotic plasma membranes exclusively by a glycolipid. GPI-APs are not only released into extracellular compartments by lipolytic cleavage. In addition, certain GPI-APs with the glycosylphosphatidylinositol anchor including their fatty acids remaining coupled to the carboxy-terminus of their protein components are also detectable in body fluids, in response to certain stimuli, such as oxidative stress, radicals or high-fat diet. As a consequence, the fatty acid moieties of GPI-APs must be shielded from access of the aqueous environment by incorporation into membranes of extracellular vesicles or into micelle-like complexes together with (lyso)phospholipids and cholesterol. The GPI-APs released from somatic cells and tissues are transferred via those complexes or EVs to somatic as well as pluripotent stem cells with metabolic consequences, such as upregulation of glycogen and lipid synthesis. From these and additional findings, the following hypotheses are developed: i) Transfer of GPI-APs via EVs or micelle-like complexes leads to the induction of new phenotypes in the daughter cells or zygotes, which are presumably not restricted to metabolism. ii) The membrane topographies transferred by the concerted action of GPI-APs and interacting components are replicated by self-organization and self-templation and remain accessible to structural changes by environmental factors. iii) Transfer from mother cells and gametes to their daughter cells and zygotes, respectively, is not restricted to DNA and genes, but also encompasses non-genetic matter, such as GPI-APs and specific membrane constituents. iv) The intergenerational transfer of membrane matter between mammalian organisms is understood as an epigenetic mechanism for phenotypic plasticity, which does not rely on modifications of DNA and histones, but is regarded as molecular mechanism for the inheritance of acquired traits, such as complex metabolic diseases. v) The missing interest in research of non-genetic matter of inheritance, which may be interpreted in the sense of Darwin's "Gemmules" or Galton's "Stirps", should be addressed in future investigations of the philosophy of science and sociology of media.

8.
Cardiovasc Diabetol ; 23(1): 104, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38504284

ABSTRACT

The 9th Cardiovascular Outcome Trial (CVOT) Summit: Congress on Cardiovascular, Kidney, and Metabolic Outcomes was held virtually on November 30-December 1, 2023. This reference congress served as a platform for in-depth discussions and exchange on recently completed outcomes trials including dapagliflozin (DAPA-MI), semaglutide (SELECT and STEP-HFpEF) and bempedoic acid (CLEAR Outcomes), and the advances they represent in reducing the risk of major adverse cardiovascular events (MACE), improving metabolic outcomes, and treating obesity-related heart failure with preserved ejection fraction (HFpEF). A broad audience of endocrinologists, diabetologists, cardiologists, nephrologists and primary care physicians participated in online discussions on guideline updates for the management of cardiovascular disease (CVD) in diabetes, heart failure (HF) and chronic kidney disease (CKD); advances in the management of type 1 diabetes (T1D) and its comorbidities; advances in the management of CKD with SGLT2 inhibitors and non-steroidal mineralocorticoid receptor antagonists (nsMRAs); and advances in the treatment of obesity with GLP-1 and dual GIP/GLP-1 receptor agonists. The association of diabetes and obesity with nonalcoholic steatohepatitis (NASH; metabolic dysfunction-associated steatohepatitis, MASH) and cancer and possible treatments for these complications were also explored. It is generally assumed that treatment of chronic diseases is equally effective for all patients. However, as discussed at the Summit, this assumption may not be true. Therefore, it is important to enroll patients from diverse racial and ethnic groups in clinical trials and to analyze patient-reported outcomes to assess treatment efficacy, and to develop innovative approaches to tailor medications to those who benefit most with minimal side effects. Other keys to a successful management of diabetes and comorbidities, including dementia, entail the use of continuous glucose monitoring (CGM) technology and the implementation of appropriate patient-physician communication strategies. The 10th Cardiovascular Outcome Trial Summit will be held virtually on December 5-6, 2024 ( http://www.cvot.org ).


Subject(s)
Cardiovascular Diseases , Diabetes Mellitus, Type 2 , Diabetes Mellitus , Heart Failure , Renal Insufficiency, Chronic , Humans , Heart Failure/complications , Blood Glucose Self-Monitoring , Stroke Volume , Blood Glucose , Cardiovascular Diseases/diagnosis , Cardiovascular Diseases/epidemiology , Cardiovascular Diseases/prevention & control , Obesity/complications , Renal Insufficiency, Chronic/diagnosis , Renal Insufficiency, Chronic/epidemiology , Renal Insufficiency, Chronic/therapy , Diabetes Mellitus/drug therapy , Kidney , Diabetes Mellitus, Type 2/drug therapy
9.
Mol Metab ; 83: 101915, 2024 May.
Article in English | MEDLINE | ID: mdl-38492844

ABSTRACT

OBJECTIVE: The glucose-dependent insulinotropic polypeptide (GIP) decreases body weight via central GIP receptor (GIPR) signaling, but the underlying mechanisms remain largely unknown. Here, we assessed whether GIP regulates body weight and glucose control via GIPR signaling in cells that express the leptin receptor (Lepr). METHODS: Hypothalamic, hindbrain, and pancreatic co-expression of Gipr and Lepr was assessed using single cell RNAseq analysis. Mice with deletion of Gipr in Lepr cells were generated and metabolically characterized for alterations in diet-induced obesity (DIO), glucose control and leptin sensitivity. Long-acting single- and dual-agonists at GIPR and GLP-1R were further used to assess drug effects on energy and glucose metabolism in DIO wildtype (WT) and Lepr-Gipr knock-out (KO) mice. RESULTS: Gipr and Lepr show strong co-expression in the pancreas, but not in the hypothalamus and hindbrain. DIO Lepr-Gipr KO mice are indistinguishable from WT controls related to body weight, food intake and diet-induced leptin resistance. Acyl-GIP and the GIPR:GLP-1R co-agonist MAR709 remain fully efficacious to decrease body weight and food intake in DIO Lepr-Gipr KO mice. Consistent with the demonstration that Gipr and Lepr highly co-localize in the endocrine pancreas, including the ß-cells, we find the superior glycemic effect of GIPR:GLP-1R co-agonism over single GLP-1R agonism to vanish in Lepr-Gipr KO mice. CONCLUSIONS: GIPR signaling in cells/neurons that express the leptin receptor is not implicated in the control of body weight or food intake, but is of crucial importance for the superior glycemic effects of GIPR:GLP-1R co-agonism relative to single GLP-1R agonism.


Subject(s)
Body Weight , Eating , Gastric Inhibitory Polypeptide , Mice, Knockout , Obesity , Receptors, Gastrointestinal Hormone , Receptors, Leptin , Animals , Male , Mice , Gastric Inhibitory Polypeptide/metabolism , Glucagon-Like Peptide 1/metabolism , Glucagon-Like Peptide-1 Receptor/metabolism , Glucagon-Like Peptide-1 Receptor/genetics , Glucose/metabolism , Leptin/metabolism , Mice, Inbred C57BL , Obesity/metabolism , Receptors, Gastrointestinal Hormone/metabolism , Receptors, Gastrointestinal Hormone/genetics , Receptors, Leptin/metabolism , Receptors, Leptin/genetics , Signal Transduction
10.
Peptides ; 176: 171198, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38527521

ABSTRACT

In recent years, significant progress has been made to pharmacologically combat the obesity pandemic, particularly with regard to biochemically tailored drugs that simultaneously target the receptors for glucagon-like peptide-1 (GLP-1) and the glucose-dependent insulinotropic polypeptide (GIP). But while the pharmacological benefits of GLP-1 receptor (GLP-1R) agonism are widely acknowledged, the role of the GIP system in regulating systems metabolism remains controversial. When given in adjunct to GLP-1R agonism, both agonism and antagonism of the GIP receptor (GIPR) improves metabolic outcome in preclinical and clinical studies, and despite persistent concerns about its potential obesogenic nature, there is accumulating evidence indicating that GIP has beneficial metabolic effects via central GIPR agonism. Nonetheless, despite growing recognition of the GIP system as a valuable pharmacological target, there remains great uncertainty as to where and how GIP acts in the brain to regulate metabolism, and how GIPR agonism may differ from GIPR antagonism in control of energy metabolism. In this review we highlight current knowledge on the central action of GIP, and discuss open questions related to its multifaceted biology in the brain and the periphery.


Subject(s)
Energy Metabolism , Gastric Inhibitory Polypeptide , Receptors, Gastrointestinal Hormone , Signal Transduction , Receptors, Gastrointestinal Hormone/metabolism , Receptors, Gastrointestinal Hormone/agonists , Humans , Energy Metabolism/drug effects , Signal Transduction/drug effects , Gastric Inhibitory Polypeptide/metabolism , Animals , Obesity/metabolism , Obesity/drug therapy , Glucagon-Like Peptide-1 Receptor/metabolism , Glucagon-Like Peptide-1 Receptor/agonists , Brain/metabolism
11.
Nat Metab ; 6(3): 448-457, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38418586

ABSTRACT

Insulin resistance is an early complication of diet-induced obesity (DIO)1, potentially leading to hyperglycaemia and hyperinsulinaemia, accompanied by adaptive ß cell hypertrophy and development of type 2 diabetes2. Insulin not only signals via the insulin receptor (INSR), but also promotes ß cell survival, growth and function via the insulin-like growth factor 1 receptor (IGF1R)3-6. We recently identified the insulin inhibitory receptor (inceptor) as the key mediator of IGF1R and INSR desensitization7. But, although ß cell-specific loss of inceptor improves ß cell function in lean mice7, it warrants clarification whether inceptor signal inhibition also improves glycaemia under conditions of obesity. We assessed the glucometabolic effects of targeted inceptor deletion in either the brain or the pancreatic ß cells under conditions of DIO in male mice. In the present study, we show that global and neuronal deletion of inceptor, as well as its adult-onset deletion in the ß cells, improves glucose homeostasis by enhancing ß cell health and function. Moreover, we demonstrate that inceptor-mediated improvement in glucose control does not depend on inceptor function in agouti-related protein-expressing or pro-opiomelanocortin neurons. Our data demonstrate that inceptor inhibition improves glucose homeostasis in mice with DIO, hence corroborating that inceptor is a crucial regulator of INSR and IGF1R signalling.


Subject(s)
Diabetes Mellitus, Type 2 , Insulin-Secreting Cells , Mice , Male , Animals , Insulin-Secreting Cells/metabolism , Glucose/metabolism , Diabetes Mellitus, Type 2/metabolism , Obesity/genetics , Obesity/metabolism , Diet , Insulin/metabolism , Homeostasis , Neurons/metabolism
12.
Physiology (Bethesda) ; 39(3): 142-156, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38353610

ABSTRACT

The prevalence of obesity continues to rise in both adolescents and adults, in parallel obesity is strongly associated with the increased incidence of type 2 diabetes, heart failure, certain types of cancer, and all-cause mortality. In relation to obesity, many pharmacological approaches of the past have tried and failed to combat the rising obesity epidemic, particularly due to insufficient efficacy or unacceptable side effects. However, while the history of antiobesity medication is plagued by failures and disappointments, we have witnessed over the last 10 years substantial progress, particularly in regard to biochemically optimized agonists at the receptor for glucagon-like peptide-1 (GLP-1R) and unimolecular coagonists at the receptors for GLP-1 and the glucose-dependent insulinotropic polypeptide (GIP). Although the GIP receptor:GLP-1R coagonists are being heralded as premier pharmacological tools for the treatment of obesity and diabetes, uncertainty remains as to why these drugs testify superiority over best-in-class GLP-1R monoagonists. Particularly with regard to GIP, there remains great uncertainty if and how GIP acts on systems metabolism and if the GIP system should be activated or inhibited to improve metabolic outcome in adjunct to GLP-1R agonism. In this review, we summarize recent advances in GLP-1- and GIP-based pharmacology and discuss recent findings and open questions related to how the GIP system affects systemic energy and glucose metabolism.


Subject(s)
Diabetes Mellitus, Type 2 , Incretins , Adult , Humans , Adolescent , Incretins/therapeutic use , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/metabolism , Glucagon-Like Peptide 1/metabolism , Glucagon-Like Peptide 1/pharmacology , Glucagon-Like Peptide 1/therapeutic use , Gastric Inhibitory Polypeptide/therapeutic use , Gastric Inhibitory Polypeptide/metabolism , Gastric Inhibitory Polypeptide/pharmacology , Obesity/drug therapy , Glucagon-Like Peptide-1 Receptor/agonists , Glucagon-Like Peptide-1 Receptor/metabolism , Glucagon-Like Peptide-1 Receptor/therapeutic use
13.
Opt Express ; 31(25): 42059-42076, 2023 Dec 04.
Article in English | MEDLINE | ID: mdl-38087588

ABSTRACT

We present the development and in-depth characterization of an optical reference based on a 1.5 µm laser stabilized to a cryogenic silicon optical resonator operated at 1.7 K. The closed-cycle cryostat is equipped with a cryogenic passive vibration isolation. At τ = 1 s integration time the frequency instability is 2 × 10-14, predominantly due to residual vibrations. At τ = 100 s the frequency instability is 6.2 × 10-15. The lowest instability of 3.5 × 10-16 occurs at τ = 6000 s, and is limited by the stability of the hydrogen maser used in the comparison. The mean fractional frequency drift rate over 190 days was -3.7 × 10-20/s. In conjunction with a frequency comb and a GNSS receiver this optical reference would be suitable to provide optical frequencies with accuracies at the low 10-14 level. We show that residual vibrations affect the resonator and the optical fiber delivering the laser light to it, and that laboratory temperature variations contribute to frequency instability at short and medium integration times. Mitigation of these issues might in the future allow for demonstration of the thermal-noise-limited performance of the resonator.

14.
Med ; 4(12): 849-851, 2023 Dec 08.
Article in English | MEDLINE | ID: mdl-38070476

ABSTRACT

The emergence of GIPR:GLP-1R co-agonists has heralded a renaissance of anti-obesity medication. In the recent SURMOUNT 2 trial, Garvey and colleagues set out to examine the weight loss efficacy of the GIPR:GLP-1R co-agonist tirzepatide in patients with obesity and type 2 diabetes, reporting that tirzepatide has unprecedented efficacy in a magnitude historically considered almost unattainable.1.


Subject(s)
Anti-Obesity Agents , Diabetes Mellitus, Type 2 , Humans , Diabetes Mellitus, Type 2/drug therapy , Obesity/drug therapy , Weight Loss , Anti-Obesity Agents/therapeutic use
15.
Nat Metab ; 5(12): 2075-2085, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37946085

ABSTRACT

The development of single-molecule co-agonists for the glucagon-like peptide-1 (GLP-1) receptor (GLP-1R) and glucose-dependent insulinotropic polypeptide (GIP) receptor (GIPR) is considered a breakthrough in the treatment of obesity and type 2 diabetes. But although GIPR-GLP-1R co-agonism decreases body weight with superior efficacy relative to GLP-1R agonism alone in preclinical1-3 and clinical studies4,5, the role of GIP in regulating energy metabolism remains enigmatic. Increasing evidence suggests that long-acting GIPR agonists act in the brain to decrease body weight through the inhibition of food intake3,6-8; however, the mechanisms and neuronal populations through which GIP affects metabolism remain to be identified. Here, we report that long-acting GIPR agonists and GIPR-GLP-1R co-agonists decrease body weight and food intake via inhibitory GABAergic neurons. We show that acyl-GIP decreases body weight and food intake in male diet-induced obese wild-type mice, but not in mice with deletion of Gipr in Vgat(also known as Slc32a1)-expressing GABAergic neurons (Vgat-Gipr knockout). Whereas the GIPR-GLP-1R co-agonist MAR709 leads, in male diet-induced obese wild-type mice, to greater weight loss and further inhibition of food intake relative to a pharmacokinetically matched acyl-GLP-1 control, this superiority over GLP-1 vanishes in Vgat-Gipr knockout mice. Our data demonstrate that long-acting GIPR agonists crucially depend on GIPR signaling in inhibitory GABAergic neurons to decrease body weight and food intake.


Subject(s)
Diabetes Mellitus, Type 2 , Male , Mice , Animals , Diabetes Mellitus, Type 2/metabolism , Gastric Inhibitory Polypeptide/metabolism , Obesity/metabolism , Glucagon-Like Peptide 1/metabolism , Receptors, G-Protein-Coupled , Glucose , GABAergic Neurons/metabolism , Eating
16.
Cell Rep ; 42(10): 113305, 2023 10 31.
Article in English | MEDLINE | ID: mdl-37864798

ABSTRACT

Oxytocin-expressing paraventricular hypothalamic neurons (PVNOT neurons) integrate afferent signals from the gut, including cholecystokinin (CCK), to adjust whole-body energy homeostasis. However, the molecular underpinnings by which PVNOT neurons orchestrate gut-to-brain feeding control remain unclear. Here, we show that mice undergoing selective ablation of PVNOT neurons fail to reduce food intake in response to CCK and develop hyperphagic obesity on a chow diet. Notably, exposing wild-type mice to a high-fat/high-sugar (HFHS) diet recapitulates this insensitivity toward CCK, which is linked to diet-induced transcriptional and electrophysiological aberrations specifically in PVNOT neurons. Restoring OT pathways in diet-induced obese (DIO) mice via chemogenetics or polypharmacology sufficiently re-establishes CCK's anorexigenic effects. Last, by single-cell profiling, we identify a specialized PVNOT neuronal subpopulation with increased κ-opioid signaling under an HFHS diet, which restrains their CCK-evoked activation. In sum, we document a (patho)mechanism by which PVNOT signaling uncouples a gut-brain satiation pathway under obesogenic conditions.


Subject(s)
Oxytocin , Paraventricular Hypothalamic Nucleus , Mice , Animals , Oxytocin/pharmacology , Paraventricular Hypothalamic Nucleus/metabolism , Analgesics, Opioid/pharmacology , Neurons/metabolism , Satiation , Cholecystokinin/metabolism
17.
Cell Metab ; 35(9): 1519-1529, 2023 09 05.
Article in English | MEDLINE | ID: mdl-37591245

ABSTRACT

The incretin system is an essential metabolic axis that regulates postprandial metabolism. The two incretin peptides that enable this effect are the glucose-dependent insulinotropic polypeptide (GIP) and the glucagon-like peptide 1 (GLP-1), which have cognate receptors (GIPR and GLP-1R) on islet ß cells as well as in other tissues. Pharmacologic engagement of the GLP-1R is a proven strategy for treating hyperglycemia in diabetes and reducing body weight. Tirzepatide is the first monomeric peptide with dual activity at both incretin receptors now available for clinical use, and in clinical trials it has shown unprecedented effects to reduce blood glucose and body weight. Here, we discuss the foundational science that led to the development of monomeric multi-incretin receptor agonists, culminating in the development of tirzepatide. We also look to the future of this field and comment on how the concept of multi-receptor agonists will continue to progress for the treatment of metabolic disease.


Subject(s)
Diabetes Mellitus , Hyperglycemia , Humans , Incretins/therapeutic use , Diabetes Mellitus/drug therapy , Weight Loss , Body Weight , Receptors, G-Protein-Coupled
18.
Cardiovasc Diabetol ; 22(1): 217, 2023 08 17.
Article in English | MEDLINE | ID: mdl-37592302

ABSTRACT

BACKGROUND: Agonism at the receptor for the glucose-dependent insulinotropic polypeptide (GIPR) is a key component of the novel unimolecular GIPR:GLP-1R co-agonists, which are among the most promising drugs in clinical development for the treatment of obesity and type 2 diabetes. The therapeutic effect of chronic GIPR agonism to treat dyslipidemia and thus to reduce the cardiovascular disease risk independently of body weight loss has not been explored yet. METHODS: After 8 weeks on western diet, LDL receptor knockout (LDLR-/-) male mice were treated with daily subcutaneous injections of long-acting acylated GIP analog (acyl-GIP; 10nmol/kg body weight) for 28 days. Body weight, food intake, whole-body composition were monitored throughout the study. Fasting blood glucose and intraperitoneal glucose tolerance test (ipGTT) were determined on day 21 of the study. Circulating lipid levels, lipoprotein profiles and atherosclerotic lesion size was assessed at the end of the study. Acyl-GIP effects on fat depots were determined by histology and transcriptomics. RESULTS: Herein we found that treatment with acyl-GIP reduced dyslipidemia and atherogenesis in male LDLR-/- mice. Acyl-GIP administration resulted in smaller adipocytes within the inguinal fat depot and RNAseq analysis of the latter revealed that acyl-GIP may improve dyslipidemia by directly modulating lipid metabolism in this fat depot. CONCLUSIONS: This study identified an unanticipated efficacy of chronic GIPR agonism to improve dyslipidemia and cardiovascular disease independently of body weight loss, indicating that treatment with acyl-GIP may be a novel approach to alleviate cardiometabolic disease.


Subject(s)
Atherosclerosis , Cardiovascular Diseases , Diabetes Mellitus, Type 2 , Dyslipidemias , Male , Animals , Mice , Diabetes Mellitus, Type 2/drug therapy , Atherosclerosis/drug therapy , Atherosclerosis/genetics , Atherosclerosis/prevention & control , Dyslipidemias/drug therapy , Body Weight , Weight Loss
19.
Front Endocrinol (Lausanne) ; 14: 1195677, 2023.
Article in English | MEDLINE | ID: mdl-37455918

ABSTRACT

Introduction: Atrial natriuretic peptide (ANP), a hormone secreted from the heart, controls cardiovascular and renal functions including arterial blood pressure and natriuresis. ANP also exerts metabolic effects in adipose tissue, liver and skeletal muscle, and interacts with the secretion of adipokines. We tested the hypothesis that ANP lowers concentrations of the anorexigenic adipokine leptin in healthy humans in vivo. Methods: Human ANP or matching placebo was infused intravenously (iv) into healthy men in a controlled clinical trial. Results: Within 135 minutes of iv ANP infusion, we observed an acute decrease in plasma leptin levels compared to controls. Free fatty acids markedly increased with ANP infusion in vivo, indicating activated lipolysis. In human SGBS adipocytes, ANP suppressed leptin release. Discussion: The study shows that the cardiac hormone ANP reduces the levels of the anorexigenic adipokine leptin in healthy humans, providing further support for ANP as a cardiomyokine in a heart - adipose tissue axis. (registered in the German Clinical Trials Register and the WHO International Clinical Trials Registry Platform was granted under DRKS00024559).


Subject(s)
Atrial Natriuretic Factor , Leptin , Humans , Male , Adipocytes/metabolism , Adipose Tissue/metabolism , Atrial Natriuretic Factor/pharmacology , Atrial Natriuretic Factor/metabolism , Leptin/metabolism , Lipolysis
20.
Diabetologia ; 66(10): 1780-1795, 2023 10.
Article in English | MEDLINE | ID: mdl-37430117

ABSTRACT

Incretin hormones (glucose-dependent insulinotropic polypeptide [GIP] and glucagon-like peptide-1 [GLP-1]) play a role in the pathophysiology of type 2 diabetes. Along with their derivatives they have shown therapeutic success in type 2 diabetes, with the potential for further improvements in glycaemic, cardiorenal and body weight-related outcomes. In type 2 diabetes, the incretin effect (greater insulin secretory response after oral glucose than with 'isoglycaemic' i.v. glucose, i.e. with an identical glycaemic stimulus) is markedly reduced or absent. This appears to be because of a reduced ability of GIP to stimulate insulin secretion, related either to an overall impairment of beta cell function or to specific defects in the GIP signalling pathway. It is likely that a reduced incretin effect impacts on postprandial glycaemic excursions and, thus, may play a role in the deterioration of glycaemic control. In contrast, the insulinotropic potency of GLP-1 appears to be much less impaired, such that exogenous GLP-1 can stimulate insulin secretion, suppress glucagon secretion and reduce plasma glucose concentrations in the fasting and postprandial states. This has led to the development of incretin-based glucose-lowering medications (selective GLP-1 receptor agonists or, more recently, co-agonists, e.g. that stimulate GIP and GLP-1 receptors). Tirzepatide (a GIP/GLP-1 receptor co-agonist), for example, reduces HbA1c and body weight in individuals with type 2 diabetes more effectively than selective GLP-1 receptor agonists (e.g. semaglutide). The mechanisms by which GIP receptor agonism may contribute to better glycaemic control and weight loss after long-term exposure to tirzepatide are a matter of active research and may change the pessimistic view that developed after the disappointing lack of insulinotropic activity in people with type 2 diabetes when exposed to GIP in short-term experiments. Future medications that stimulate incretin hormone and other receptors simultaneously may have the potential to further increase the ability to control plasma glucose concentrations and induce weight loss.


Subject(s)
Diabetes Mellitus, Type 2 , Incretins , Humans , Incretins/therapeutic use , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/metabolism , Blood Glucose/metabolism , Glucagon-Like Peptide-1 Receptor/agonists , Gastric Inhibitory Polypeptide/metabolism , Glucagon-Like Peptide 1/metabolism , Glucose/metabolism , Body Weight , Weight Loss , Insulin/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...