Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Oncogene ; 32(44): 5241-52, 2013 Oct 31.
Article in English | MEDLINE | ID: mdl-23208498

ABSTRACT

Besides its established functions in intermediary metabolism and developmental processes, the nuclear receptor peroxisome proliferator-activated receptor ß/δ (PPARß/δ) has a less defined role in tumorigenesis. In the present study, we have identified a function for PPARß/δ in cancer cell invasion. We show that two structurally divergent inhibitory ligands for PPARß/δ, the inverse agonists ST247 and DG172, strongly inhibit the serum- and transforming growth factor ß (TGFß)-induced invasion of MDA-MB-231 human breast cancer cells into a three-dimensional matrigel matrix. To elucidate the molecular basis of this finding, we performed chromatin immunoprecipitation sequencing (ChIP-Seq) and microarray analyses, which identified the gene encoding angiopoietin-like 4 (ANGPTL4) as the major transcriptional PPARß/δ target in MDA-MB-231 cells, previously implicated in TGFß-mediated tumor progression and metastatic dissemination. We show that the induction of ANGPTL4 by TGFß and other oncogenic signals is strongly repressed by ST247 and DG172 in a PPARß/δ-dependent fashion, resulting in the inhibition of ANGPTL4 secretion. This effect is attributable to these ligands' ability to induce a dominant transcriptional repressor complex at the site of transcription initiation that blocks preinitiation complex formation through an histone deacetylase-independent, non-canonical mechanism. Repression of ANGPTL4 transcription by inverse PPARß/δ agonists is functionally linked to the inhibition of cancer cell invasion into a three-dimensional matrix, as (i) invasion of MDA-MB-231 cells is critically dependent on ANGPTL4 expression, (ii) recombinant ANGPTL4 stimulates invasion, and (iii) reverses the inhibitory effect of ST247 and DG172. These findings indicate that a PPARß/δ-ANGPTL4 pathway is involved in the regulation of tumor cell invasion and that its pharmacological manipulation by inverse PPARß/δ agonists is feasible.


Subject(s)
Acrylonitrile/analogs & derivatives , Angiopoietins/genetics , PPAR delta/physiology , Piperazines/pharmacology , Signal Transduction , Sulfonamides/pharmacology , Thiophenes/pharmacology , Acrylonitrile/pharmacology , Angiopoietin-Like Protein 4 , Angiopoietins/metabolism , Binding Sites , Cell Line, Tumor , Cell Movement , Gene Expression Regulation, Neoplastic , Histone Deacetylases/metabolism , Humans , Neoplasm Invasiveness , PPAR delta/agonists , Retinoid X Receptors/metabolism , Transcription Initiation, Genetic/drug effects , Transforming Growth Factor beta/physiology
2.
Leukemia ; 19(10): 1774-82, 2005 Oct.
Article in English | MEDLINE | ID: mdl-16136169

ABSTRACT

BCR/ABL-kinase mutations frequently mediate clinical resistance to the selective tyrosine kinase inhibitor Imatinib mesylate (IM, Gleevec). However, mechanisms that promote survival of BCR/ABL-positive cells before clinically overt IM resistance occurs have poorly been defined so far. Here, we demonstrate that IM-treatment activated the phosphatidylinositol 3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTor)-pathway in BCR/ABL-positive LAMA-cells and primary leukemia cells in vitro, as well as in a chronic phase CML patient in vivo. In fact, PI3K/Akt-activation critically mediated survival during the early phase of IM resistance development before manifestation of BCR/ABL-dependent strong IM resistance such as through a kinase mutation. Accordingly, inhibition of IM-induced Akt activation using mTor inhibitors and Akt-specific siRNA effectively antagonized development of incipient IM-resistance in vitro. In contrast, IM-resistant chronic myeloid leukemia (CML) patients with BCR/ABL kinase mutations (n=15), and IM-refractory BCR/ABL-positive acute lymphatic leukemia patients (n=2) displayed inconsistent and kinase mutation-independent autonomous patterns of Akt-pathway activation, and mTor-inhibition overcame IM resistance only if Akt was strongly activated. Together, an IM-induced compensatory Akt/mTor activation may represent a novel mechanism for the persistence of BCR/ABL-positive cells in IM-treated patients. Treatment with mTor inhibitors may thus be particularly effective in IM-sensitive patients, whereas Akt-pathway activation variably contributes to clinically overt IM resistance.


Subject(s)
Antineoplastic Agents/therapeutic use , Apoptosis/drug effects , Drug Resistance, Neoplasm , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy , Phosphatidylinositol 3-Kinases/metabolism , Piperazines/therapeutic use , Protein Kinases/metabolism , Protein Serine-Threonine Kinases/metabolism , Proto-Oncogene Proteins/metabolism , Pyrimidines/therapeutic use , Benzamides , Blotting, Western , Cell Cycle/drug effects , Enzyme Activation/drug effects , Everolimus , Fusion Proteins, bcr-abl/genetics , Fusion Proteins, bcr-abl/metabolism , Humans , Imatinib Mesylate , Immunosuppressive Agents/pharmacology , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology , Mutagenesis , Phosphorylation/drug effects , Protein Kinases/chemistry , Protein Serine-Threonine Kinases/genetics , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins c-akt , RNA, Messenger/genetics , RNA, Messenger/metabolism , RNA, Small Interfering/pharmacology , Reverse Transcriptase Polymerase Chain Reaction , Ribosomal Protein S6 Kinases, 70-kDa/metabolism , Sirolimus/analogs & derivatives , Sirolimus/pharmacology , TOR Serine-Threonine Kinases , Tumor Cells, Cultured
SELECTION OF CITATIONS
SEARCH DETAIL
...