Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Transl Psychiatry ; 9(1): 95, 2019 02 18.
Article in English | MEDLINE | ID: mdl-30778045

ABSTRACT

The affiliations. Originally, Kolja Schilz was named last in the affiliations, implying that he is the senior author. This has been corrected; Kolja Schilz is now mentioned after Martin Walter in both the html and PDF versions of the article.

2.
Transl Psychiatry ; 9(1): 28, 2019 01 18.
Article in English | MEDLINE | ID: mdl-30659171

ABSTRACT

Child sexual offending (CSO) places a serious burden on society and medicine and pedophilia (P) is considered a major risk factor for CSO. The androgen system is closely linked to sexual development and behavior. This study assessed markers of prenatal brain androgenization, genetic parameters of androgen receptor function, epigenetic regulation, and peripheral hormones in a 2 × 2 factorial design comprising the factors Offense (yes/no) and Pedophilia (yes/no) in analyzing blood samples from 194 subjects (57 P+CSO, 45 P-CSO, 20 CSO-P, and 72 controls) matched for age and intelligence. Subjects also received a comprehensive clinical screening. Independent of their sexual preference, child sexual offenders showed signs of elevated prenatal androgen exposure compared with non-offending pedophiles and controls. The methylation status of the androgen receptor gene was also higher in child sexual offenders, indicating lower functionality of the testosterone system, accompanied by lower peripheral testosterone levels. In addition, there was an interaction effect on methylation levels between offense status and androgen receptor functionality. Notably, markers of prenatal androgenization and the methylation status of the androgen receptor gene were correlated with the total number of sexual offenses committed. This study demonstrates alterations of the androgen system on a prenatal, epigenetic, and endocrine level. None of the major findings was specific for pedophilia, but they were for CSO. The findings support theories of testosterone-linked abnormalities in early brain development in delinquent behavior and suggest possible interactions of testosterone receptor gene methylation and plasma testosterone with environmental factors.


Subject(s)
Brain/physiopathology , Epigenesis, Genetic , Pedophilia/genetics , Receptors, Androgen/genetics , Adult , DNA Methylation , Humans , Intelligence , Magnetic Resonance Imaging , Male , Pedophilia/blood , Pedophilia/physiopathology , Risk Factors , Testosterone/blood
3.
Front Psychiatry ; 9: 511, 2018.
Article in English | MEDLINE | ID: mdl-30459647

ABSTRACT

Major problems of current antidepressant pharmacotherapy are insufficient response rates and difficulties in response prediction. We recently provided preliminary evidence in a small study that patients with major depressive disorder (MDD) with a hypomethylation of the CpG-87 site of the promoter IV region of the brain-derived neurotrophic factor (BDNF) gene are less likely to benefit from antidepressants. Here, we aimed at replicating this finding in a secondary analysis of 561 MDD patients (mean age 40.0 ± 11.9 years, 56% female) included into the Early Medication Change study (EMC). We measured BDNF exon IV promoter and p11 gene methylation at Baseline (BL) as well as BDNF-plasma-levels (pBDNF) at BL and day 14 and related them to treatment outcome. Although we were not able to replicate the predictor function of hypomethylation of the BDNF exon IV promoter, a subgroup of patients with severe depression (Hamilton Depression Rating Scale [HAMD-17] ≥ 25) (n = 199) and hypermethylation at CpG-87 of the BDNF exon IV promoter had significantly higher remission rates than patients without a methylation (p = 0.032). We also found that 421 (75%) of 561 patients showed an early improvement (≥ 20% HAMD-17 reduction after 2 weeks), which was associated with a 4.24-fold increased likelihood to remit at study end compared to the 140 patients without early improvement. However, specificity of response prediction of early improvement was low (34%) and false positive rate high (66%). The combination of early improvement with a pBDNF increase between BL and day 14, however, increased the specificity of response prediction from 34 to 76%, and the combination with methylation of the CpG-87 site of the BDNF exon IV promoter from 34 to 62%. Thus, the combined markers reduced false positives rates from 66 to 24% and 38%, respectively. Methylation at other sites or p11 promoter methylation failed to increase specificity of early improvement prediction. In sum, the results add to previous findings that BDNF, BDNF promoter methylation and the combination of clinical and biological markers may be interesting candidates for therapy response prediction which has to be confirmed in further studies. Clinical Trial Registration: https://clinicaltrials.gov/ct2/show/NCT00974155, identifier: NCT00974155.

4.
J Psychiatr Res ; 86: 1-8, 2017 03.
Article in English | MEDLINE | ID: mdl-27883923

ABSTRACT

Several lines of evidence support a "dopaminergic hypothesis" in the pathophysiology of Gilles de la Tourette syndrome (TS). The aim of this study was to investigate for the first time epigenetic changes in DNA methylation in different dopamine genes in adult patients with TS. We included 51 well characterized adult patients with TS (41 males, 10 females, mean age = 35 ± 12.6 years, range, 18-71 years) and compared results with data from a group of 51 sex- and age-matched healthy controls. Bisulfite sequencing was used to measure peripheral DNA methylation of the dopamine transporter (DAT), the dopamine D2 receptor (DRD2), and the catechol-O-methyltransferase (COMT) genes. Compared to healthy controls, patients with TS showed significantly elevated methylation level of the DRD2 gene that positively correlated with tic severity. In contrast, DAT methylation was lower in more severely affected patients. Our results provide evidence for a role of altered epigenetic regulation of dopaminergic genes in the pathophysiology of TS. While DRD2 hypermethylation seems to be directly related to the neurobiology of TS that may lead to dopaminergic dysfunction resulting in enhanced thalamo-cortical movement-stimulating activity, DAT hypomethylation might reflect a secondary mechanism in order to compensate for increased dopaminergic signal transduction due to DRD2 hypermethylation. In addition, it can be speculated that spontaneous fluctuations of tics may be caused by short-term alterations of methylation levels of dopaminergic genes resulting in dynamic changes of tonic/phasic dopaminergic signaling in the striatum and thalamo-cortical output pathways.


Subject(s)
DNA Methylation , Receptors, Dopamine D2/genetics , Tourette Syndrome/genetics , Adolescent , Adult , Aged , Catechol O-Methyltransferase/genetics , Catechol O-Methyltransferase/metabolism , Dopamine Plasma Membrane Transport Proteins/genetics , Dopamine Plasma Membrane Transport Proteins/metabolism , Epigenesis, Genetic , Female , Humans , Male , Middle Aged , Receptors, Dopamine D2/metabolism , Severity of Illness Index , Tics/genetics , Tics/metabolism , Tourette Syndrome/metabolism , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...