Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 49
Filter
1.
J Magn Reson Imaging ; 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38963154

ABSTRACT

BACKGROUND: Lower back pain affects 75%-85% of people at some point in their lives. The detection of biochemical changes with sodium (23Na) MRI has potential to enable an earlier and more accurate diagnosis. PURPOSE: To measure 23Na relaxation times and apparent tissue sodium concentration (aTSC) in ex-vivo intervertebral discs (IVDs), and to investigate the relationship between aTSC and histological Thompson grade. STUDY TYPE: Ex-vivo. SPECIMEN: Thirty IVDs from the lumbar spines of 11 human body donors (4 female, 7 male, mean age 86 ± 8 years). FIELD STRENGTH/SEQUENCE: 3 T; density-adapted 3D radial sequence (DA-3D-RAD). ASSESSMENT: IVD 23Na longitudinal (T1), short and long transverse (T2s* and T2l*) relaxation times and the proportion of the short transverse relaxation (ps) were calculated for one IVD per spine sample (11 IVDs). Furthermore, aTSCs were calculated for all IVDs. The degradation of the IVDs was assessed via histological Thompson grading. STATISTICAL TESTS: A Kendall Tau correlation (τ) test was performed between the aTSCs and the Thompson grades. The significance level was set to P < 0.05. RESULTS: Mean 23Na relaxation parameters of a subset of 11 IVDs were T1 = 9.8 ± 1.3 msec, T2s* = 0.7 ± 0.1 msec, T2l* = 7.3 ± 1.1 msec, and ps = 32.7 ± 4.0%. A total of 30 IVDs were examined, of which 3 had Thompson grade 1, 4 had grade 2, 5 had grade 3, 5 had grade 4, and 13 had grade 5. The aTSC decreased with increasing degradation, being 274.6 ± 18.9 mM for Thompson grade 1 and 190.5 ± 29.5 mM for Thompson grade 5. The correlation between whole IVD aTSC and Thompson grade was significant and strongly negative (τ = -0.56). DATA CONCLUSION: This study showed a significant correlation between aTSC and degenerative IVD changes. Consequently, aTSC has potential to be useful as an indicator of degenerative spinal changes. EVIDENCE LEVEL: 2 TECHNICAL EFFICACY: Stage 1.

2.
Skeletal Radiol ; 53(4): 791-800, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37819279

ABSTRACT

OBJECTIVE: Clinical-standard MRI is the imaging modality of choice for the wrist, yet limited to static evaluation, thereby potentially missing dynamic instability patterns. We aimed to investigate the clinical benefit of (dynamic) real-time MRI, complemented by automatic analysis, in patients with complete or partial scapholunate ligament (SLL) tears. MATERIAL AND METHODS: Both wrists of ten patients with unilateral SLL tears (six partial, four complete tears) as diagnosed by clinical-standard MRI were imaged during continuous active radioulnar motion using a 1.5-T MRI scanner in combination with a custom-made motion device. Following automatic segmentation of the wrist, the scapholunate and lunotriquetral joint widths were analyzed across the entire range of motion (ROM). Mixed-effects model analysis of variance (ANOVA) followed by Tukey's posthoc test and two-way ANOVA were used for statistical analysis. RESULTS: With the increasing extent of SLL tear, the scapholunate joint widths in injured wrists were significantly larger over the entire ROM compared to those of the contralateral healthy wrists (p<0.001). Differences between partial and complete tears were most pronounced at 5°-15° ulnar abduction (p<0.001). Motion patterns and trajectories were altered. Complete SLL deficiency resulted in complex alterations of the lunotriquetral joint widths. CONCLUSION: Real-time MRI may improve the functional diagnosis of SLL insufficiency and aid therapeutic decision-making by revealing dynamic forms of dissociative instability within the proximal carpus. Static MRI best differentiates SLL-injured wrists at 5°-15° of ulnar abduction.


Subject(s)
Carpal Joints , Joint Instability , Wrist Injuries , Humans , Wrist Joint/diagnostic imaging , Magnetic Resonance Imaging/methods , Carpal Joints/diagnostic imaging , Ligaments, Articular/diagnostic imaging , Magnetic Resonance Spectroscopy , Joint Instability/diagnostic imaging , Wrist Injuries/diagnostic imaging
3.
Quant Imaging Med Surg ; 13(11): 7467-7483, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37969627

ABSTRACT

Background: The field of orthopedics seeks effective, safer methods for evaluating articular cartilage regeneration. Despite various treatment innovations, non-invasive, contrast-free full quantitative assessments of hyaline articular cartilage's regenerative potential using compositional magnetic resonance (MR) sequences remain challenging. In this context, our aim was to investigate the effectiveness of different MR sequences for quantitative assessment of cartilage and to compare them with the current gold standard delayed gadolinium-enhanced MR imaging of cartilage (dGEMRIC) measurements. Methods: We employed ex vivo imaging in a preclinical minipig model to assess knee cartilage regeneration. Standardized osteochondral defects were drilled in the proximal femur of the specimens (n=14), which were divided into four groups. Porcine collagen scaffolds seeded with autologous adipose-derived stromal cells (ASC), autologous bone marrow stromal cells (BMSC), and unseeded scaffolds (US) were implanted in femoral defects. Furthermore, there was a defect group which received no treatment. After 6 months, the specimens were examined using different compositional MR methods, including the gold standard dGEMRIC as well as T1, T2, T2*, and T1ρ techniques. The statistical evaluation involved comparing the defect region with the uninjured tibia and femur cartilage layers and all measurements were performed on a clinical 3T MR Scanner. Results: In the untreated defect group, we observed significant differences in the defect region, with dGEMRIC values significantly lower (404.86±64.2 ms, P=0.018) and T2 times significantly higher (44.24±2.75 ms, P<0.001). Contrastingly, in all three treatment groups (ASC, BMSC, US), there were no significant differences among the three regions in the dGEMRIC sequence, suggesting successful cartilage regeneration. However, T1, T2*, and T1ρ sequences failed to detect such differences, highlighting their lower sensitivity for cartilage regeneration. Conclusions: As expected, dGEMRIC is well suited for monitoring cartilage regeneration. Interestingly, T2 imaging also proved to be a reliable cartilage imaging technique and thus offers a contrast agent-free alternative to the former gold standard for subsequent in vivo studies investigating the cartilage regeneration potential of different treatment modalities.

4.
Diagnostics (Basel) ; 13(21)2023 Oct 27.
Article in English | MEDLINE | ID: mdl-37958222

ABSTRACT

Chemical Exchange Saturation Transfer (CEST) magnetic resonance imaging (MRI) provides a novel method for analyzing biomolecule concentrations in tissues without exogenous contrast agents. Despite its potential, achieving a high signal-to-noise ratio (SNR) is imperative for detecting small CEST effects. Traditional metrics such as Magnetization Transfer Ratio Asymmetry (MTRasym) and Lorentzian analyses are vulnerable to image noise, hampering their precision in quantitative concentration estimations. Recent noise-reduction algorithms like principal component analysis (PCA), nonlocal mean filtering (NLM), and block matching combined with 3D filtering (BM3D) have shown promise, as there is a burgeoning interest in the utilization of neural networks (NNs), particularly autoencoders, for imaging denoising. This study uses the Bloch-McConnell equations, which allow for the synthetic generation of CEST images and explores NNs efficacy in denoising these images. Using synthetically generated phantoms, autoencoders were created, and their performance was compared with traditional denoising methods using various datasets. The results underscored the superior performance of NNs, notably the ResUNet architectures, in noise identification and abatement compared to analytical approaches across a wide noise gamut. This superiority was particularly pronounced at elevated noise intensities in the in vitro data. Notably, the neural architectures significantly improved the PSNR values, achieving up to 35.0, while some traditional methods struggled, especially in low-noise reduction scenarios. However, the application to the in vivo data presented challenges due to varying noise profiles. This study accentuates the potential of NNs as robust denoising tools, but their translation to clinical settings warrants further investigation.

5.
Diagnostics (Basel) ; 13(10)2023 May 16.
Article in English | MEDLINE | ID: mdl-37238230

ABSTRACT

(1) Background: We aim to investigate age-related changes in cartilage structure and composition in the metacarpophalangeal (MCP) joints using magnetic resonance (MR) biomarkers. (2) Methods: The cartilage tissue of 90 MCP joints from 30 volunteers without any signs of destruction or inflammation was examined using T1, T2, and T1ρ compositional MR imaging techniques on a 3 Tesla clinical scanner and correlated with age. (3) Results: The T1ρ and T2 relaxation times showed a significant correlation with age (T1ρ: Kendall-τ-b = 0.3, p < 0.001; T2: Kendall-τ-b = 0.2, p = 0.01). No significant correlation was observed for T1 as a function of age (T1: Kendall-τ-b = 0.12, p = 0.13). (4) Conclusions: Our data show an increase in T1ρ and T2 relaxation times with age. We hypothesize that this increase is due to age-related changes in cartilage structure and composition. In future examinations of cartilage using compositional MRI, especially T1ρ and T2 techniques, e.g., in patients with osteoarthritis or rheumatoid arthritis, the age of the patients should be taken into account.

6.
J Clin Med ; 12(6)2023 Mar 16.
Article in English | MEDLINE | ID: mdl-36983306

ABSTRACT

Low levels of delayed gadolinium-enhanced magnetic resonance imaging of cartilage (dGEMRIC) values are indicative of cartilage degeneration. Patients with early rheumatoid arthritis are known to have low dGEMRIC values due to inflammatory activity. The additional effect of biological disease-modifying antirheumatic drug (bDMARD) and conventional synthetic disease-modifying antirheumatic drug (csDMARD) treatment on cartilage status is still unclear. In this prospective, double-blinded, randomized proof-of-concept clinical trial, patients with early rheumatoid arthritis (disease duration less than 12 months from symptoms onset) were treated with methotrexate + adalimumab (10 patients: 6/4 (f/m)). A control group with methotrexate alone (four patients: 2/2 (f/m)) was used. Cartilage integrity in the metacarpophalangeal joints was compared using dGEMRIC at baseline, 12, and 24 weeks after treatment initiation. A statistically significant increase in dGEMRIC levels was found in the adalimumab group considering the results after 12 and 24 weeks of therapy (p < 0.05) but not in the control group (p: non-significant). After 24 weeks, a tendency towards increased dGEMRIC values under combination therapy was observed, whereas methotrexate alone showed a slight decrease without meeting the criteria of significance (dGEMRIC mean change: +85.8 ms [-156.2-+346.5 ms] vs. 30.75 ms [-273.0-+131.0 ms]; p: non-significant). After 24 weeks of treatment with a combination of methotrexate and adalimumab, a trend indicating improvement in cartilage composition is seen in patients with early rheumatoid arthritis. However, treatment with methotrexate alone showed no change in cartilage composition, as observed in dGEMRIC sequences of metacarpophalangeal joints.

7.
J Med Syst ; 47(1): 39, 2023 Mar 24.
Article in English | MEDLINE | ID: mdl-36961580

ABSTRACT

Analysis of chemical exchange saturation transfer (CEST) MRI data requires sophisticated methods to obtain reliable results about metabolites in the tissue under study. CEST generates z-spectra with multiple components, each originating from individual molecular groups. The individual lines with Lorentzian line shape are mostly overlapping and disturbed by various effects. We present an elaborate method based on an adaptive nonlinear least squares algorithm that provides robust quantification of z-spectra and incorporates prior knowledge in the fitting process. To disseminate CEST to the research community, we developed software as part of this study that runs on the Microsoft Windows operating system and will be made freely available to the community. Special attention has been paid to establish a low entrance threshold and high usability, so that even less experienced users can successfully analyze CEST data.


Subject(s)
Magnetic Resonance Imaging , Software , Humans , Magnetic Resonance Imaging/methods , Algorithms , Least-Squares Analysis
8.
Int J Mol Sci ; 23(18)2022 Sep 17.
Article in English | MEDLINE | ID: mdl-36142810

ABSTRACT

Sodium magnetic resonance imaging (MRI) can be used to evaluate the change in the proteoglycan content in Achilles tendons (ATs) of patients with different AT pathologies by measuring the 23Na signal-to-noise ratio (SNR). As 23Na SNR alone is difficult to compare between different studies, because of the high influence of hardware configurations and sequence settings on the SNR, we further set out to measure the apparent tissue sodium content (aTSC) in the AT as a better comparable parameter. Ten healthy controls and one patient with tendinopathy in the AT were examined using a clinical 3 Tesla (T) MRI scanner in conjunction with a dual tuned 1H/23Na surface coil to measure 23Na SNR and aTSC in their ATs. 23Na T1 and T2* of the AT were also measured for three controls to correct for different relaxation behavior. The results were as follows: 23Na SNR = 11.7 ± 2.2, aTSC = 82.2 ± 13.9 mM, 23Na T1 = 20.4 ± 2.4 ms, 23Na T2s* = 1.4 ± 0.4 ms, and 23Na T2l* = 13.9 ± 0.8 ms for the whole AT of healthy controls with significant regional differences. These are the first reported aTSCs and 23Na relaxation times for the AT using sodium MRI and may serve for future comparability in different studies regarding examinations of diseased ATs with sodium MRI.


Subject(s)
Achilles Tendon , Achilles Tendon/diagnostic imaging , Achilles Tendon/pathology , Humans , Magnetic Resonance Imaging/methods , Proteoglycans , Reproducibility of Results , Sodium
9.
Quant Imaging Med Surg ; 12(8): 4190-4201, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35919061

ABSTRACT

Background: Clinical-standard morphologic magnetic resonance imaging (MRI) is limited in the refined diagnosis of posterior cruciate ligament (PCL) injuries. Quantitative MRI sequences such as ultrashort echo-time (UTE)-T2* mapping or conventional T2* mapping have been theorized to quantify ligament (ultra-) structure and integrity beyond morphology. This study evaluates their diagnostic potential in identifying and differentiating partial and complete PCL injuries in a standardized graded injury model. Methods: Ten human cadaveric knee joint specimens were imaged on a clinical 3.0 T MRI scanner using morphologic, conventional T2* mapping, and UTE-T2* mapping sequences before and after standardized arthroscopic partial and complete PCL transection. Following manual segmentation, quantitative T2* and underlying texture features (i.e., energy, homogeneity, and variance) were analyzed for each specimen and PCL condition, both for the entire PCL and its subregions. For statistical analysis, Friedman's test followed by Dunn's multiple comparison test was used against the level of significance of P≤0.01. Results: For the entire PCL, T2* was significantly increased as a function of injury when acquired with the UTE-T2* sequence [entire PCL: 11.1±3.1 ms (intact); 10.9±4.6 ms (partial); 14.3±4.9 ms (complete); P<0.001], but not when acquired with the conventional T2* sequence [entire PCL: 10.0±3.2 ms (intact); 11.4±6.2 ms (partial); 15.5±7.8 ms (complete); P=0.046]. The PCL subregions and texture variables showed variable changes indicative of injury-associated disorganization. Conclusions: In contrast to the conventional T2* mapping, UTE-T2* mapping is more receptive in the detection of structural damage of the PCL and allows quantitative assessment of ligament (ultra-)structure and integrity that may help to improve diagnostic differentiation of distinct injury states. Once further substantiated beyond the in-situ setting, UTE-T2* mapping may refine diagnostic evaluation of PCL injuries and -possibly- monitor ligament healing, ageing, degeneration, and inflammation.

10.
Int J Mol Sci ; 23(13)2022 Jun 22.
Article in English | MEDLINE | ID: mdl-35805925

ABSTRACT

Based on in silico, in situ, and in vivo studies, this study aims to develop a new method for the quantitative chemical exchange saturation transfer (qCEST) technique considering multi-pool systems. To this end, we extended the state-of-the-art apparent exchange-dependent relaxation (AREX) method with a Lorentzian correction (LAREX). We then validated this new method with in situ and in vivo experiments on human intervertebral discs (IVDs) using the Kendall-Tau correlation coefficient. In the in silico experiments, we observed significant deviations of the AREX method as a function of the underlying exchange rate (kba) and fractional concentration (fb) compared to the ground truth due to the influence of other exchange pools. In comparison to AREX, the LAREX-based Ω-plot approach yielded a substantial improvement. In the subsequent in situ and in vivo experiments on human IVDs, no correlation to the histological reference standard or Pfirrmann classification could be found for the fb (in situ: τ = −0.17 p = 0.51; in vivo: τ = 0.13 p = 0.30) and kba (in situ: τ = 0.042 p = 0.87; in vivo: τ = −0.26 p = 0.04) of Glycosaminoglycan (GAG) with AREX. In contrast, the influence of interfering pools could be corrected by LAREX, and a moderate to strong correlation was observed for the fractional concentration of GAG for both in situ (τ = −0.71 p = 0.005) and in vivo (τ = −0.49 p < 0.001) experiments. The study presented here is the first to introduce a new qCEST method that enables qCEST imaging in systems with multiple proton pools.


Subject(s)
Intervertebral Disc , Magnetic Resonance Imaging , Glycosaminoglycans , Humans , Magnetic Resonance Imaging/methods , Protons
11.
Tomography ; 8(3): 1277-1292, 2022 05 07.
Article in English | MEDLINE | ID: mdl-35645392

ABSTRACT

Based on in silico, in vitro, in situ, and in vivo evaluations, this study aims to establish and optimize the chemical exchange saturation transfer (CEST) imaging of lactate (Lactate-CEST­LATEST). To this end, we optimized LATEST sequences using Bloch−McConnell simulations for optimal detection of lactate with a clinical 3 T MRI scanner. The optimized sequences were used to image variable lactate concentrations in vitro (using phantom measurements), in situ (using nine human cadaveric lower leg specimens), and in vivo (using four healthy volunteers after exertional exercise) that were then statistically analyzed using the non-parametric Friedman test and Kendall Tau-b rank correlation. Within the simulated Bloch−McConnell equations framework, the magnetization transfer ratio asymmetry (MTRasym) value was quantified as 0.4% in the lactate-specific range of 0.5−1 ppm, both in vitro and in situ, and served as the imaging surrogate of the lactate level. In situ, significant differences (p < 0.001) and strong correlations (τ = 0.67) were observed between the MTRasym values and standardized intra-muscular lactate concentrations. In vivo, a temporary increase in the MTRasym values was detected after exertional exercise. In this bench-to-bedside comprehensive feasibility study, different lactate concentrations were detected using an optimized LATEST imaging protocol in vitro, in situ, and in vivo at 3 T, which prospectively paves the way towards non-invasive quantification and monitoring of lactate levels across a broad spectrum of diseases.


Subject(s)
Lactic Acid , Magnetic Resonance Imaging , Humans , Magnetic Resonance Imaging/methods , Phantoms, Imaging , Physical Phenomena , Protons
12.
Magn Reson Imaging ; 90: 61-69, 2022 07.
Article in English | MEDLINE | ID: mdl-35476934

ABSTRACT

PURPOSE: To assess the performance of two point (2-pt) Dixon-based chemical exchange saturation transfer (CEST) imaging for fat suppression in renal transplant patients. METHODS: The 2-pt Dixon-based CEST MRI was validated in an egg-phantom and in fourteen renal transplant recipients (5 females and 9 males; age range: 23-78 years; mean age: 51 ± 16.8). All CEST experiments were performed on a 3 T clinical MRI scanner using a dual-echo CEST sequence. The 2-pt Dixon technique was applied to generate water-only CEST images at different frequency offsets, which were further used to calculate the z-spectra. The magnetization transfer ratio asymmetry (MTRasym) values in the frequency ranges of hydroxyl, amine and amide protons were estimated in the renal cortex and medulla. RESULTS: Results of the in vitro experiments suggest that the 2-pt Dixon technique enables effective fat peak removal and does not introduce additional asymmetries to the z-spectrum. Accordingly, our results in vivo show that the fat-corrected amide proton transfer (APT) effect in the kidney is significantly higher compared to that obtained from the CEST data acquired close to the in-phase condition both in the renal cortex (-0.1 [0.7] vs. -0.7 [1.2], P = 0.029) and medulla (0.3 [0.8] vs. 0.01 [1.3], P = 0.049), indicating that the 2-pt Dixon-based CEST method increases the specificity of the APT contrast by correcting the fat-induced artifacts. CONCLUSION: Combination of the dual-echo CEST acquisition with Dixon post-processing provides effective water-fat separation, allowing more accurate quantification of the APT CEST effect in the transplanted kidney.


Subject(s)
Kidney Transplantation , Adult , Aged , Amides , Female , Humans , Magnetic Resonance Imaging/methods , Male , Middle Aged , Phantoms, Imaging , Protons , Water , Young Adult
13.
Diagnostics (Basel) ; 13(1)2022 Dec 29.
Article in English | MEDLINE | ID: mdl-36611395

ABSTRACT

In recent years, much research evaluating the radiographic destruction of finger joints in patients with rheumatoid arthritis (RA) using deep learning models was conducted. Unfortunately, most previous models were not clinically applicable due to the small object regions as well as the close spatial relationship. In recent years, a new network structure called RetinaNets, in combination with the focal loss function, proved reliable for detecting even small objects. Therefore, the study aimed to increase the recognition performance to a clinically valuable level by proposing an innovative approach with adaptive changes in intersection over union (IoU) values during training of Retina Networks using the focal loss error function. To this end, the erosion score was determined using the Sharp van der Heijde (SvH) metric on 300 conventional radiographs from 119 patients with RA. Subsequently, a standard RetinaNet with different IoU values as well as adaptively modified IoU values were trained and compared in terms of accuracy, mean average accuracy (mAP), and IoU. With the proposed approach of adaptive IoU values during training, erosion detection accuracy could be improved to 94% and an mAP of 0.81 ± 0.18. In contrast Retina networks with static IoU values achieved only an accuracy of 80% and an mAP of 0.43 ± 0.24. Thus, adaptive adjustment of IoU values during training is a simple and effective method to increase the recognition accuracy of small objects such as finger and wrist joints.

14.
Diagnostics (Basel) ; 11(12)2021 Dec 08.
Article in English | MEDLINE | ID: mdl-34943538

ABSTRACT

Sodium MRI has the potential to depict cartilage health accurately, but synovial fluid can influence the estimation of sodium parameters of cartilage. Therefore, this study aimed to reduce the impact of synovial fluid to render the quantitative compositional analyses of cartilage tissue technically more robust. Two dedicated protocols were applied for determining sodium T1 and T2* relaxation times. For each protocol, data were acquired from 10 healthy volunteers and one patient with patellar cartilage damage. Data recorded with multiple repetition times for T1 measurement and multi-echo data acquired with an additional inversion recovery pulse for T2* measurement were analysed using biexponential models to differentiate longitudinal relaxation components of cartilage (T1,car) and synovial fluid (T1,syn), and short (T2s*) from long (T2l*) transversal relaxation components. Sodium relaxation times and concentration estimates in patellar cartilage were successfully determined: T1,car = 14.5 ± 0.7 ms; T1,syn = 37.9 ± 2.9 ms; c(T1-protocol) = 200 ± 48 mmol/L; T2s* = 0.4 ± 0.1 ms; T2l* = 12.6 ± 0.7 ms; c(T2*-protocol) = 215 ± 44 mmol/L for healthy volunteers. In conclusion, a robust determination of sodium relaxation times is possible at a clinical field strength of 3T to quantify sodium concentrations, which might be a valuable tool to determine cartilage health.

15.
Diagnostics (Basel) ; 11(6)2021 Jun 11.
Article in English | MEDLINE | ID: mdl-34208361

ABSTRACT

While morphologic magnetic resonance imaging (MRI) is the imaging modality of choice for the evaluation of ligamentous wrist injuries, it is merely static and incapable of diagnosing dynamic wrist instability. Based on real-time MRI and algorithm-based image post-processing in terms of convolutional neural networks (CNNs), this study aims to develop and validate an automatic technique to quantify wrist movement. A total of 56 bilateral wrists (28 healthy volunteers) were imaged during continuous and alternating maximum ulnar and radial abduction. Following CNN-based automatic segmentations of carpal bone contours, scapholunate and lunotriquetral gap widths were quantified based on dedicated algorithms and as a function of wrist position. Automatic segmentations were in excellent agreement with manual reference segmentations performed by two radiologists as indicated by Dice similarity coefficients of 0.96 ± 0.02 and consistent and unskewed Bland-Altman plots. Clinical applicability of the framework was assessed in a patient with diagnosed scapholunate ligament injury. Considerable increases in scapholunate gap widths across the range-of-motion were found. In conclusion, the combination of real-time wrist MRI and the present framework provides a powerful diagnostic tool for dynamic assessment of wrist function and, if confirmed in clinical trials, dynamic carpal instability that may elude static assessment using clinical-standard imaging modalities.

16.
Diagnostics (Basel) ; 11(6)2021 May 22.
Article in English | MEDLINE | ID: mdl-34067470

ABSTRACT

Lumbar intervertebral disc (IVD) degeneration is characterized by structural and compositional changes. This study aimed to assess the glycosaminoglycan (GAG) content of IVDs of patients with adolescent idiopathic scoliosis (AIS) and healthy controls using GAG chemical exchange saturation transfer (gagCEST) imaging. Ten AIS patients (mean age 18.3 ± 8.2 years) and 16 healthy controls (mean age 25.5 ± 1.7 years) were included. Clinical standard morphologic MR images (T1w-, T2w-, and STIR-sequences), to rule out further spinal disorders and assess IVD degeneration using the Pfirrmann score, and compositional gagCEST sequences were acquired on a 3T MRI. In AIS patients, the most distal scoliotic curve was determined on whole-spine conventional radiographs and morphological MRI and IVDs were divided as to whether they were affected by scoliotic deformity, i.e., proximal (affected, aIVDs) or distal (unaffected, uaIVDs) to the stable vertebra of the most distal scoliotic curve. Linear mixed models were used to compare mean gagCEST-values. Over all segments, AIS-patients' IVDs exhibited significantly lower gagCEST-values than the controls: 2.76 [2.32, 3.20]% (AIS), 3.51 [3.16, 3.86]% (Control); p = 0.005. Meanwhile, no significant differences were found for gagCEST values comparing aIVDs with uaIVDs. In conclusion, as a powerful diagnostic adjunct, gagCEST imaging may be prospectively applied to detect early compositional degenerative changes in patients suffering from AIS.

17.
Diagnostics (Basel) ; 11(3)2021 Feb 26.
Article in English | MEDLINE | ID: mdl-33652924

ABSTRACT

Using glycosaminoglycan Chemical Exchange Saturation Transfer (gagCEST) magnetic resonance imaging (MRI), this study comparatively evaluated the GAG contents of lumbar intervertebral disks (IVDs) of patients with non-specific low back pain (nsLBP), radiculopathy, and asymptomatic volunteers to elucidate the association of clinical manifestation and compositional correlate. A total of 18 patients (mean age 57.5 ± 22.5 years) with radiculopathy, 16 age-matched patients with chronic nsLBP and 20 age-matched volunteers underwent standard morphologic and compositional gagCEST MRI on a 3T scanner. In all cohorts, GAG contents of lumbar IVDs were determined using gagCEST MRI. An assessment of morphologic IVD degeneration based on the Pfirrmann classification and T2-weighted sequences served as a reference. A linear mixed model adjusted for multiple confounders was used for statistical evaluation. IVDs of patients with nsLBP showed lower gagCEST values than those of volunteers (nsLBP: 1.3% [99% confidence intervals (CI): 1.0; 1.6] vs. volunteers: 1.9% [99% CI: 1.6; 2.2]). Yet, IVDs of patients with radiculopathy (1.8% [99% CI: 1.4; 2.1]) were not different from patients with nsLBP or volunteers. In patients with radiculopathy, IVDs directly adjacent to IVD extrusions demonstrated lower gagCEST values than distant IVDs (adjacent: 0.9% [99% CI: 0.3; 1.5], distant: 2.1% [99% CI: 1.7; 2.5]). Advanced GAG depletion in nsLBP and directly adjacent to IVD extrusions in radiculopathy indicates close interrelatedness of clinical pathology and compositional degeneration.

18.
MAGMA ; 34(2): 241-248, 2021 Apr.
Article in English | MEDLINE | ID: mdl-32500389

ABSTRACT

OBJECTIVE: To measure sodium relaxation times and concentrations in human wrists on a clinical magnetic resonance imaging (MRI) scanner with a density-adapted radial sequence. MATERIALS AND METHODS: Sodium MRI of human wrists was conducted on a 3T MR system using a dual-tuned 1H/23Na surface coil. We performed two studies with 10 volunteers each investigating either sodium T1 (study 1) or sodium T2* (study 2) relaxation times in the radiocarpal joint (RCJ) and midcarpal joint (MCJ). Sodium concentrations of both regions were determined. RESULTS: No differences for transversal of longitudinal relaxation times were found between RCJ and MCJ (T2,s*(RCJ) = (0.9 ± 0.4) ms; T2,s*(MCJ) = (0.9 ± 0.3) ms; T2,l*(RCJ) = (14.9 ± 0.9) ms; T2,l*(MCJ) = (13.9 ± 1.1) ms; T1(RCJ) = (19.0 ± 2.4) ms; T1(MCJ) = (18.5 ± 2.1) ms). Sodium concentrations were (157.7 ± 28.4) mmol/l for study 1 and (159.8 ± 29.1) mmol/l for study 2 in the RCJ, and (172.7 ± 35.6) mmol/l for study 1 and (163.4 ± 26.3) mmol/l for study 2 in the MCJ. CONCLUSION: We successfully determined sodium relaxation times and concentrations of the human wrist on a 3T MRI scanner.


Subject(s)
Cartilage, Articular , Wrist , Feasibility Studies , Humans , Magnetic Resonance Imaging , Sodium
19.
MAGMA ; 34(2): 249-260, 2021 Apr.
Article in English | MEDLINE | ID: mdl-32725359

ABSTRACT

OBJECTIVE: To establish and optimize a stable 3 Tesla (T) glycosaminoglycan chemical exchange saturation transfer (gagCEST) imaging protocol for assessing the articular cartilage of the tibiotalar joint in healthy volunteers and patients after a sustained injury to the ankle. METHODS: Using Bloch-McConnell simulations, we optimized the sequence protocol for a 3 T MRI scanner for maximum gagCEST effect size within a clinically feasible time frame of less than 07:30 min. This protocol was then used to analyze the gagCEST effect of the articular cartilage of the tibiotalar joint of 17 healthy volunteers and five patients with osteochondral lesions of the talus following ankle trauma. Reproducibility was tested with the intraclass correlation coefficient. RESULTS: The mean magnetization transfer ratio asymmetry (MTRasym), i.e., the gagCEST effect size, was significantly lower in patients than in healthy volunteers (0.34 ± 1.9% vs. 1.49 ± 0.11%; p < 0.001 [linear mixed model]). Intra- and inter-rater reproducibility was excellent with an average measure intraclass correlation coefficient (ICC) of 0.97 and a single measure ICC of 0.91 (p < 0.01). DISCUSSION: In this feasibility study, pre-morphological tibiotalar joint cartilage damage was quantitatively assessable on the basis of the optimized 3 T gagCEST imaging protocol that allowed stable quantification gagCEST effect sizes across a wide range of health and disease in clinically feasible acquisition times.


Subject(s)
Cartilage, Articular , Feasibility Studies , Glycosaminoglycans , Humans , Magnetic Resonance Imaging , Reproducibility of Results
20.
Front Med (Lausanne) ; 7: 539870, 2020.
Article in English | MEDLINE | ID: mdl-33102496

ABSTRACT

Objective: Even though cartilage loss is a known feature of psoriatic arthritis (PsA), research is sparse on its role in the pathogenesis of PsA and its potential use for disease detection and monitoring. Using delayed gadolinium-enhanced magnetic resonance imaging of cartilage (dGEMRIC) and dynamic contrast-enhanced MRI (DCE MRI), research has shown that early cartilage loss is strongly associated with synovial inflammation in rheumatoid arthritis (RA). The aim of this study was to determine if acute inflammation is associated with early cartilage loss in small finger joints of patients with PsA. Methods: Metacarpophalangeal (MCP), proximal interphalangeal (PIP), and distal interphalangeal (DIP) joints of 17 patients with active PsA were evaluated by high-resolution 3 Tesla dGEMRIC and DCE MRI using a dedicated 16-channel hand coil. Semi-quantitative and quantitative perfusion parameters were calculated. Images were analyzed by two independent raters for dGEMRIC indices, PsA MRI scores (PsAMRIS), total cartilage thickness (TCT), and joint space width (JSW). Results: We found significant negative correlations between perfusion parameters (except Kep) and dGEMRIC indices, with the highest value at the MCP joints (KTrans: τ = -0.54, p = 0.01; Kep: τ = -0.02, p = 0.90; IAUC: τ = -0.51, p = 0.015; Initial Slope: τ = -0.54, p = 0.01; Peak: τ = -0.67, p = 0.002). Heterogeneous correlations were detected between perfusion parameters and both, total PsAMRIS and PsAMRIS synovitis sub-scores. No significant correlation was seen between any perfusion parameter and JSW and/or TCT. Conclusion: As examined by DCE MRI and dGEMRIC, there is a potential association between early cartilage loss and acute synovial inflammation in small finger joints of PsA patients.

SELECTION OF CITATIONS
SEARCH DETAIL
...