Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 905: 166888, 2023 Dec 20.
Article in English | MEDLINE | ID: mdl-37730064

ABSTRACT

Recycling of phosphorus (P) from waste streams in agriculture is essential to reduce the negative environmental effects of surplus P and the unsustainable mining of geological P resources. Sewage sludge (SS) is an important P source; however, several issues are associated with the handling and application of SS in agriculture. Thus, post-treatments such as pyrolysis of SS into biochar (BC) could address some of these issues. Here we elucidate how patches of SS in soil interact with the living roots of wheat and affect important P-related rhizosphere processes compared to their BC counterparts. Wheat plants were grown in rhizoboxes with sandy loam soil, and 1 cm Ø patches with either SS or BC placed 10 cm below the seed. A negative control (CK) was included. Planar optode pH sensors were used to visualize spatiotemporal pH changes during 40 days of plant growth, diffusive gradients in thin films (DGT) were applied to map labile P, and zymography was used to visualize the spatial distribution of acid (ACP) and alkaline (ALP) phosphatase activity. In addition, bulk soil measurements of available P, pH, and ACP activity were conducted. Finally, the relative abundance of bacterial P-cycling genes (phoD, phoX, phnK) was determined in the patch area rhizosphere. Labile P was only observed in the area of the SS patches, and SS further triggered root proliferation and increased the activity of ACP and ALP in interaction with the roots. In contrast, BC seemed to be inert, had no visible effect on root growth, and even reduced ACP and ALP activity in the patch area. Furthermore, there was a lower relative abundance of phoD and phnK genes in the BC rhizosphere compared to the CK. Hence, optimization of BC properties is needed to increase the short-term efficiency of BC from SS as a P fertilizer.


Subject(s)
Phosphorus , Sewage , Rhizosphere , Soil/chemistry , Charcoal , Triticum , Fertilizers
2.
New Phytol ; 229(3): 1268-1277, 2021 02.
Article in English | MEDLINE | ID: mdl-32929739

ABSTRACT

Phosphate-solubilising microorganisms (PSM) are often reported to have positive effects on crop productivity through enhanced phosphorus (P) nutrition. Our aim was to evaluate the validity of this concept. Most studies that report 'positive effects' of PSM on plant growth have been conducted under controlled conditions, whereas field experiments more frequently fail to demonstrate a positive response. Many studies have indicated that the mechanisms seen in vitro do not translate into improved crop P nutrition in complex soil-plant systems. Furthermore, associated mechanisms are often not rigorously assessed. We suggest that PSM do not mobilise sufficient P to change the crops' nutritional environment under field conditions. The current concept, in which PSM solubilise P 'for the plant' should thus be revised. Although PSM have the capacity to solubilise P to meet their own needs, it is the turnover of the microbial biomass that subsequently provides P to plants over a longer time. Therefore, the existing concept of PSM function is unlikely to deliver a reliable strategy for increasing crop P nutrition. A further mechanistic understanding is needed to determine how P mobilisation by PSM as a component of the whole soil community can be manipulated to become more effective for plant P nutrition.


Subject(s)
Phosphates , Soil , Agriculture , Crops, Agricultural , Phosphorus , Soil Microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...