Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Microbiol Resour Announc ; 11(11): e0066322, 2022 Nov 17.
Article in English | MEDLINE | ID: mdl-36200901

ABSTRACT

Community composition and recruitment are important elements of plant-microbe interactions and may provide insights for plant development and resilience. The results of 16S rRNA amplicon sequencing from four rhizocompartments for four wheat cultivars grown under controlled conditions and sampled after flag leaf emergence are provided. Data demonstrate differences in microbial communities according to rhizocompartment.

2.
J Environ Manage ; 323: 116249, 2022 Dec 01.
Article in English | MEDLINE | ID: mdl-36137456

ABSTRACT

Current political focus on promoting circular economy in the European Union drives great interest in developing and using more biobased fertilizers (BBFs, most often waste or residue-derived). Many studies have been published on environmental emissions, including ammonia (NH3) volatilization from manures, but there have only been a few such studies on BBFs. Ammonia volatilization from agriculture poses a risk to the environment and human health, causing pollution in natural ecosystems when deposited and formation of fine particulate matter (PMx). Furthermore, NH3 volatilization results in removal of plant-available N from agricultural systems, constituting an economic loss for farmers. The aim of this laboratory study was to determine the potential NH3 volatilization from 39 different BBFs commercially available on the European market. In addition, this study aimed to investigate the effect of incorporation, application rate, soil type, and soil moisture content on potential NH3 volatilization in order to derive suggestions for the optimal field application conditions. Results showed a great variation between BBFs in potential NH3 volatilization, both in terms of their temporal pattern of volatilization and amount of NH3 volatilized. The potential NH3 volatilization varied from 0% of applied total N (olive oil compost) to 64% of applied total N (manure and crop digestate) during a 27- or 44-day incubation period. Characteristics of BBFs (pH, NH4+-N, NO3--N, DM, C:N) and their interaction with time could explain 89% of the variation in accumulated potential NH3 volatilization. Incorporation of BBFs into an acidic sandy soil effectively reduced potential NH3 volatilization by 37%-96% compared to surface application of BBFs. Potential NH3 volatilization was not significantly affected by differences in application rate or soil moisture content, but varied between five different soils (with different clay and organic matter content), with the highest NH3 volatilization potential from the acidic sandy soil.


Subject(s)
Ammonia , Fertilizers , Agriculture/methods , Ammonia/analysis , Clay , Ecosystem , Fertilizers/analysis , Humans , Manure , Nitrogen/analysis , Olive Oil , Particulate Matter , Soil
3.
J Environ Manage ; 317: 115373, 2022 Sep 01.
Article in English | MEDLINE | ID: mdl-35649336

ABSTRACT

Extensive oil palm plantations have often resulted in the decrease of soil organic carbon (SOC). Several options exist to counter this, such as recycling empty fruit bunches (EFB) as a soil amendment. However, the extent to which EFB increase SOC has been disputed. Since EFB could also be used as a climate change mitigation tool, it is necessary to truly understand their impact on SOC. The investigation of the impact of nine EFB treatments (differing in frequency and application rates) on a 27-year-old large-scale experiment (Lampung, Sumatra, Indonesia) revealed that, while EFB impacts are heterogeneous throughout the plantation, they can positively affect total SOC and permanganate oxidisable carbon (POX-C) both at shallow and deep depths (measured up to 100 cm). POX-C was closely correlated to SOC, but showed significant increases compared to the untreated control in all treatments, while total SOC was only increased in a few treatments with small and frequent rates of EFB application. Overall, between 12 (±16) and 56 (±12) t ha-1 of carbon were sequestered under the harvesting path after 21 years. Focussing on the mineral nutrition value of the EFB, oil palm companies apply a rate of 60 t of EFB every second year for their commercial production, and the analysis of three commercial plots showed that the commercial rate only increased POX-C while it had no effect on the total SOC and SOC stocks. It seems obvious that a change of paradigm is necessary to consider EFB recycling as a new management perspective, where the potential for carbon sequestration becomes an important variable for climate change mitigation besides the initial objective of integrating EFB application into the fertiliser management plan of a plantation.


Subject(s)
Industrial Oils , Soil , Carbon , Fruit , Palm Oil
4.
Sci Total Environ ; 836: 155590, 2022 Aug 25.
Article in English | MEDLINE | ID: mdl-35490815

ABSTRACT

Prediction of the relative phosphorus (P) fertiliser value of bio-based fertiliser products is agronomically important, but previous attempts to develop prediction models have often failed due to the high chemical complexity of bio-based fertilisers and the limited number of products included in analyses. In this study, regression models for prediction were developed using independently produced data from 10 different studies on crop growth responses to P applied with bio-based fertiliser products, resulting in a dataset with 69 products. The 69 fertiliser products were organised into four sub-groups, based on the inorganic P compounds most likely to be present in each product. Within each product group, multiple regression was conducted using mineral fertiliser equivalents (MFE) as response variable and three potential explanatory variables derived from chemical analysis, all reflecting inorganic P binding in the fertiliser products: i) NaHCO3-soluble P, ii) molar ratio of calcium (Ca):P and iii) molar ratio of aluminium + iron (Al + Fe):P. The best regression model fit was achieved for sewage sludges with Al-/Fe-bound P (n = 20; R2 = 79.2%), followed by sewage sludges with Ca-bound P (n = 11; R2 = 71.1%); fertiliser products with Ca-bound P (n = 29; R2 = 58.2%); and thermally treated sewage sludge products (n = 9; R2 = 44.9%). Even though external factors influencing P fertiliser values (e.g. fertiliser shape, application form, soil characteristics) differed between the underlying studies and were not considered, the suggested prediction models provide potential for more efficient P recycling in practice.


Subject(s)
Fertilizers , Sewage , Fertilizers/analysis , Minerals , Phosphorus , Soil
5.
Microbiol Resour Announc ; 11(5): e0022222, 2022 May 19.
Article in English | MEDLINE | ID: mdl-35416691

ABSTRACT

Understanding basic interactions at the plant-soil interphase is critical if we are to exploit natural microbial communities for improved crop resilience. We report here 16S amplicon sequencing data from 3 rhizocompartments of 4 wheat cultivars grown under controlled greenhouse conditions. We observed that rhizocompartments and cultivar affect the community composition.

6.
Sci Total Environ ; 627: 963-974, 2018 Jun 15.
Article in English | MEDLINE | ID: mdl-29426221

ABSTRACT

We investigated how two different biochars (wood biochar - WBC and straw biochar - SBC) affected P dynamics and bioavailability in five different soils differing in pH, C%, texture, Fe, Al, Ca, and Mg giving a range of soils with low (S1 and S2), intermediate (S4), and high (S3 and S5) P sorption capacities. Langmuir and Freundlich equations were fitted to the sorption data of soil and soil/biochar mixtures. P fertilizer applied to all treatments was fractioned into strongly sorbed P (qS), easily available sorbed P (qA) and solution P (c) by determining the anion exchange resin (AER)-extractable P in samples from the sorption experiment. A pot experiment was conducted to measure P uptake by maize grown in S1, S2 and S3 amended with WBC or SBC at two P fertilizer levels (0 or 70mgPkg-1). Only WBC could sorb P from solution partly due to a high content of calcite. SBC did not have any effect on P sorption isotherms, whereas WBC increased the P sorption in S1, S2, and S4, yet decreased P sorption in acidic soil S5. qS increased in S1, S2, and S4, and decreased in S5 in WBC treatments, whereas, qS decreased in SBC treatments in soils S2, S4, and S5. Accordingly, there was a significant interaction between soil type and biochar on maize growth and P uptake. Biochar had no effect in an alkaline soil (S3), whereas, WBC and SBC had positive effects on maize growth in slightly acidic soils S1 and S2, depending on the soil P status, however, the P uptake was lower in WBC compared to SBC treatments. Biochar and soil properties and the P status of the soil affect P bioavailability. The study provides useful information for optimizing the use of biochar in agricultural P management.

7.
J Environ Manage ; 198(Pt 1): 308-318, 2017 Aug 01.
Article in English | MEDLINE | ID: mdl-28478348

ABSTRACT

Fertilizer quality of ash and char from incineration, gasification and pyrolysis of a single municipal sewage sludge sample were investigated by comparing composition and phosphorus (P) plant availability. A process for post oxidation of gasification ash and pyrolysis char was developed and the oxidized materials were investigated as well. Sequential extraction with full elemental balances of the extracted pools as well as scanning electron microscopy with energy dispersive X-ray spectroscopy were used to investigate the mechanisms driving the observed differences in composition and P plant availability in a short-term soil incubation study. The compositional changes related mainly to differences in the proximate composition as well as to the release of especially nitrogen, sulfur, cadmium and to some extent, phosphorus (P). The cadmium load per unit of P was reduced with 75-85% in gasification processes and 10-15% in pyrolysis whereas no reduction was observed in incineration processes. The influence on other heavy metals was less pronounced. The plant availability of P in the substrates varied from almost zero to almost 100% of the plant availability of P in the untreated sludge. Post-oxidized slow pyrolysis char was found to be the substrate with the highest P fertilizer value while ash from commercial fluid bed sludge incineration had the lowest P fertilizer quality. The high P fertilizer value in the best substrate is suggested to be a function of several different mechanisms including structural surface changes and improvements in the association of P to especially magnesium, calcium and aluminum.


Subject(s)
Fertilizers , Metals, Heavy , Sewage , Incineration , Phosphorus
8.
Waste Manag ; 66: 145-154, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28479087

ABSTRACT

The study is part 2 of 2 in an investigation of gasification and co-gasification of municipal sewage sludge in low temperature gasifiers. In this work, solid residuals from thermal gasification and co-gasification of municipal sewage sludge were investigated for their potential use as fertilizer. Ashes from five different low temperature circulating fluidized bed (LT-CFB) gasification campaigns including two mono-sludge campaigns, two sludge/straw mixed fuels campaigns and a straw reference campaign were compared. Experiments were conducted on two different LT-CFBs with thermal capacities of 100kW and 6MW, respectively. The assessment included: (i) Elemental composition and recovery of key elements and heavy metals; (ii) content of total carbon (C) and total nitrogen (N); (iii) pH; (iv) water extractability of phosphorus after incubation in soil; and (v) plant phosphorus response measured in a pot experiment with the most promising ash material. Co-gasification of straw and sludge in LT-CFB gasifiers produced ashes with a high content of recalcitrant C, phosphorus (P) and potassium (K), a low content of heavy metals (especially cadmium) and an improved plant P availability compared to the mono-sludge ashes, thereby showing the best fertilizer qualities among all assessed materials. It was also found that bottom ashes from the char reactor contained even less heavy metals than cyclone ashes. It is concluded that LT-CFB gasification and co-gasification is a highly effective way to purify and sanitize sewage sludge for subsequent use in agricultural systems.


Subject(s)
Fertilizers , Phosphorus , Sewage , Coal Ash , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...