Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
Add more filters










Publication year range
1.
Nat Commun ; 15(1): 3470, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38658534

ABSTRACT

Identifying active compounds for a target is a time- and resource-intensive task in early drug discovery. Accurate bioactivity prediction using morphological profiles could streamline the process, enabling smaller, more focused compound screens. We investigate the potential of deep learning on unrefined single-concentration activity readouts and Cell Painting data, to predict compound activity across 140 diverse assays. We observe an average ROC-AUC of 0.744 ± 0.108 with 62% of assays achieving ≥0.7, 30% ≥0.8, and 7% ≥0.9. In many cases, the high prediction performance can be achieved using only brightfield images instead of multichannel fluorescence images. A comprehensive analysis shows that Cell Painting-based bioactivity prediction is robust across assay types, technologies, and target classes, with cell-based assays and kinase targets being particularly well-suited for prediction. Experimental validation confirms the enrichment of active compounds. Our findings indicate that models trained on Cell Painting data, combined with a small set of single-concentration data points, can reliably predict the activity of a compound library across diverse targets and assays while maintaining high hit rates and scaffold diversity. This approach has the potential to reduce the size of screening campaigns, saving time and resources, and enabling primary screening with more complex assays.


Subject(s)
Drug Discovery , High-Throughput Screening Assays , High-Throughput Screening Assays/methods , Humans , Drug Discovery/methods , Deep Learning , Small Molecule Libraries/chemistry , Small Molecule Libraries/pharmacology
2.
ACS Chem Biol ; 17(7): 1733-1744, 2022 07 15.
Article in English | MEDLINE | ID: mdl-35793809

ABSTRACT

PROteolysis TArgeting Chimeras (PROTACs) use the ubiquitin-proteasome system to degrade a protein of interest for therapeutic benefit. Advances made in targeted protein degradation technology have been remarkable, with several molecules having moved into clinical studies. However, robust routes to assess and better understand the safety risks of PROTACs need to be identified, which is an essential step toward delivering efficacious and safe compounds to patients. In this work, we used Cell Painting, an unbiased high-content imaging method, to identify phenotypic signatures of PROTACs. Chemical clustering and model prediction allowed the identification of a mitotoxicity signature that could not be expected by screening the individual PROTAC components. The data highlighted the benefit of unbiased phenotypic methods for identifying toxic signatures and the potential to impact drug design.


Subject(s)
High-Throughput Screening Assays , Proteolysis , Ubiquitin-Protein Ligases , Humans , Proteasome Endopeptidase Complex/metabolism , Ubiquitin-Protein Ligases/metabolism
3.
Biochim Biophys Acta Mol Cell Res ; 1869(7): 119262, 2022 07.
Article in English | MEDLINE | ID: mdl-35341806

ABSTRACT

In order to avoid a prolonged pro-inflammatory neutrophil response, signaling downstream of an agonist-activated G protein-coupled receptor (GPCR) has to be rapidly terminated. Among the family of GPCR kinases (GRKs) that regulate receptor phosphorylation and signaling termination, GRK2, which is highly expressed by immune cells, plays an important role. The medium chain fatty acid receptor GPR84 as well as formyl peptide receptor 2 (FPR2), receptors expressed in neutrophils, play a key role in regulating inflammation. In this study, we investigated the effects of GRK2 inhibitors on neutrophil functions induced by GPR84 and FPR2 agonists. GRK2 was shown to be expressed in human neutrophils and analysis of subcellular fractions revealed a cytosolic localization. The GRK2 inhibitors enhanced and prolonged neutrophil production of reactive oxygen species (ROS) induced by GPR84- but not FPR2-agonists, suggesting a receptor selective function of GRK2. This suggestion was supported by ß-arrestin recruitment data. The ROS production induced by a non ß-arrestin recruiting GPR84 agonist was not affected by the GRK2 inhibitor. Termination of this ß-arrestin independent response relied, similar to the response induced by FPR2 agonists, primarily on the actin cytoskeleton. In summary, we show that GPR84 utilizes GRK2 in concert with ß-arrestin and actin cytoskeleton dependent processes to fine-tune the activity of the ROS generating NADPH-oxidase in neutrophils.


Subject(s)
G-Protein-Coupled Receptor Kinase 2 , NADPH Oxidases , Neutrophils , Receptors, G-Protein-Coupled , beta-Arrestins , G-Protein-Coupled Receptor Kinase 2/metabolism , Humans , NADP/pharmacology , NADPH Oxidases/metabolism , Neutrophils/metabolism , Reactive Oxygen Species/metabolism , Receptors, G-Protein-Coupled/agonists , beta-Arrestins/metabolism
4.
Front Physiol ; 12: 697270, 2021.
Article in English | MEDLINE | ID: mdl-34305651

ABSTRACT

As a result of stress, injury, or aging, cardiac fibrosis is characterized by excessive deposition of extracellular matrix (ECM) components resulting in pathological remodeling, tissue stiffening, ventricular dilatation, and cardiac dysfunction that contribute to heart failure (HF) and eventually death. Currently, there are no effective therapies specifically targeting cardiac fibrosis, partially due to limited understanding of the pathological mechanisms and the lack of predictive in vitro models for high-throughput screening of antifibrotic compounds. The use of more relevant cell models, three-dimensional (3D) models, and coculture systems, together with high-content imaging (HCI) and machine learning (ML)-based image analysis, is expected to improve predictivity and throughput of in vitro models for cardiac fibrosis. In this review, we present an overview of available in vitro assays for cardiac fibrosis. We highlight the potential of more physiological 3D cardiac organoids and coculture systems and discuss HCI and automated artificial intelligence (AI)-based image analysis as key methods able to capture the complexity of cardiac fibrosis in vitro. As 3D and coculture models will soon be sufficiently mature for application in large-scale preclinical drug discovery, we expect the combination of more relevant models and high-content analysis to greatly increase translation from in vitro to in vivo models and facilitate the discovery of novel targets and drugs against cardiac fibrosis.

5.
Life Sci Alliance ; 4(3)2021 03.
Article in English | MEDLINE | ID: mdl-33402344

ABSTRACT

Cyclin A2 is a key regulator of the cell cycle, implicated both in DNA replication and mitotic entry. Cyclin A2 participates in feedback loops that activate mitotic kinases in G2 phase, but why active Cyclin A2-CDK2 during the S phase does not trigger mitotic kinase activation remains unclear. Here, we describe a change in localisation of Cyclin A2 from being only nuclear to both nuclear and cytoplasmic at the S/G2 border. We find that Cyclin A2-CDK2 can activate the mitotic kinase PLK1 through phosphorylation of Bora, and that only cytoplasmic Cyclin A2 interacts with Bora and PLK1. Expression of predominately cytoplasmic Cyclin A2 or phospho-mimicking PLK1 T210D can partially rescue a G2 arrest caused by Cyclin A2 depletion. Cytoplasmic presence of Cyclin A2 is restricted by p21, in particular after DNA damage. Cyclin A2 chromatin association during DNA replication and additional mechanisms contribute to Cyclin A2 localisation change in the G2 phase. We find no evidence that such mechanisms involve G2 feedback loops and suggest that cytoplasmic appearance of Cyclin A2 at the S/G2 transition functions as a trigger for mitotic kinase activation.


Subject(s)
Cell Cycle Proteins/metabolism , Cyclin A2/metabolism , Cytoplasm/metabolism , G2 Phase/genetics , Protein Serine-Threonine Kinases/metabolism , Proto-Oncogene Proteins/metabolism , S Phase/genetics , Signal Transduction/genetics , CDC2 Protein Kinase/deficiency , CDC2 Protein Kinase/genetics , Cell Nucleus/metabolism , Chromatin/metabolism , Cyclin A2/genetics , Cyclin-Dependent Kinase 2/deficiency , Cyclin-Dependent Kinase 2/genetics , DNA Damage/genetics , Enzyme Activation/genetics , HeLa Cells , Humans , Mitosis/genetics , Phosphorylation/genetics , Protein Binding , Transfection , Polo-Like Kinase 1
6.
Cells ; 9(9)2020 09 19.
Article in English | MEDLINE | ID: mdl-32961751

ABSTRACT

Cells recovering from the G2/M DNA damage checkpoint rely more on Aurora A-PLK1 signaling than cells progressing through an unperturbed G2 phase, but the reason for this discrepancy is not known. Here, we devised a method based on a FRET reporter for PLK1 activity to sort cells in distinct populations within G2 phase. We employed mass spectroscopy to characterize changes in protein levels through an unperturbed G2 phase and validated that ATAD2 levels decrease in a proteasome-dependent manner. Comparing unperturbed cells with cells recovering from DNA damage, we note that at similar PLK1 activities, recovering cells contain higher levels of Cyclin B1 and increased phosphorylation of CDK1 targets. The increased Cyclin B1 levels are due to continuous Cyclin B1 production during a DNA damage response and are sustained until mitosis. Whereas partial inhibition of PLK1 suppresses mitotic entry more efficiently when cells recover from a checkpoint, partial inhibition of CDK1 suppresses mitotic entry more efficiently in unperturbed cells. Our findings provide a resource for proteome changes during G2 phase, show that the mitotic entry network is rewired during a DNA damage response, and suggest that the bottleneck for mitotic entry shifts from CDK1 to PLK1 after DNA damage.


Subject(s)
CDC2 Protein Kinase/genetics , Cell Cycle Proteins/genetics , Fibroblasts/metabolism , G2 Phase Cell Cycle Checkpoints/genetics , M Phase Cell Cycle Checkpoints/genetics , Mitosis/drug effects , Protein Serine-Threonine Kinases/genetics , Proto-Oncogene Proteins/genetics , ATPases Associated with Diverse Cellular Activities/genetics , ATPases Associated with Diverse Cellular Activities/metabolism , Aurora Kinase A/genetics , Aurora Kinase A/metabolism , CDC2 Protein Kinase/metabolism , Cell Cycle Proteins/metabolism , Cell Line, Tumor , Cyclin B1/genetics , Cyclin B1/metabolism , DNA Damage , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Fibroblasts/cytology , Fibroblasts/drug effects , Flow Cytometry , Fluorescence Resonance Energy Transfer , G2 Phase Cell Cycle Checkpoints/drug effects , Gene Expression Regulation , Humans , M Phase Cell Cycle Checkpoints/drug effects , Phosphorylation , Protein Serine-Threonine Kinases/metabolism , Proto-Oncogene Proteins/metabolism , Signal Transduction , Tumor Suppressor p53-Binding Protein 1/genetics , Tumor Suppressor p53-Binding Protein 1/metabolism , Zinostatin/pharmacology , Polo-Like Kinase 1
7.
Stem Cells Transl Med ; 9(1): 47-60, 2020 01.
Article in English | MEDLINE | ID: mdl-31508905

ABSTRACT

Identification of small molecules with the potential to selectively proliferate cardiac progenitor cells (CPCs) will aid our understanding of the signaling pathways and mechanisms involved and could ultimately provide tools for regenerative therapies for the treatment of post-MI cardiac dysfunction. We have used an in vitro human induced pluripotent stem cell-derived CPC model to screen a 10,000-compound library containing molecules representing different target classes and compounds reported to modulate the phenotype of stem or primary cells. The primary readout of this phenotypic screen was proliferation as measured by nuclear count. We identified retinoic acid receptor (RAR) agonists as potent proliferators of CPCs. The CPCs retained their progenitor phenotype following proliferation and the identified RAR agonists did not proliferate human cardiac fibroblasts, the major cell type in the heart. In addition, the RAR agonists were able to proliferate an independent source of CPCs, HuES6. The RAR agonists had a time-of-differentiation-dependent effect on the HuES6-derived CPCs. At 4 days of differentiation, treatment with retinoic acid induced differentiation of the CPCs to atrial cells. However, after 5 days of differentiation treatment with RAR agonists led to an inhibition of terminal differentiation to cardiomyocytes and enhanced the proliferation of the cells. RAR agonists, at least transiently, enhance the proliferation of human CPCs, at the expense of terminal cardiac differentiation. How this mechanism translates in vivo to activate endogenous CPCs and whether enhancing proliferation of these rare progenitor cells is sufficient to enhance cardiac repair remains to be investigated.


Subject(s)
Myocytes, Cardiac/metabolism , Receptors, Retinoic Acid/agonists , Stem Cells/metabolism , Humans , Phenotype
9.
EMBO J ; 36(14): 2161-2176, 2017 07 14.
Article in English | MEDLINE | ID: mdl-28607002

ABSTRACT

After DNA damage, the cell cycle is arrested to avoid propagation of mutations. Arrest in G2 phase is initiated by ATM-/ATR-dependent signaling that inhibits mitosis-promoting kinases such as Plk1. At the same time, Plk1 can counteract ATR-dependent signaling and is required for eventual resumption of the cell cycle. However, what determines when Plk1 activity can resume remains unclear. Here, we use FRET-based reporters to show that a global spread of ATM activity on chromatin and phosphorylation of ATM targets including KAP1 control Plk1 re-activation. These phosphorylations are rapidly counteracted by the chromatin-bound phosphatase Wip1, allowing cell cycle restart despite persistent ATM activity present at DNA lesions. Combining experimental data and mathematical modeling, we propose a model for how the minimal duration of cell cycle arrest is controlled. Our model shows how cell cycle restart can occur before completion of DNA repair and suggests a mechanism for checkpoint adaptation in human cells.


Subject(s)
Ataxia Telangiectasia Mutated Proteins/metabolism , Cell Cycle Proteins/metabolism , Chromatin/metabolism , G2 Phase Cell Cycle Checkpoints , Protein Phosphatase 2C/metabolism , Protein Serine-Threonine Kinases/metabolism , Proto-Oncogene Proteins/metabolism , Cell Line , Fluorescence Resonance Energy Transfer , Humans , Models, Biological , Models, Theoretical , Phosphorylation , Protein Interaction Mapping , Protein Processing, Post-Translational , Repressor Proteins/metabolism , Tripartite Motif-Containing Protein 28 , Polo-Like Kinase 1
10.
Aging Cell ; 16(3): 575-584, 2017 06.
Article in English | MEDLINE | ID: mdl-28345297

ABSTRACT

In response to DNA damage, a cell can be forced to permanently exit the cell cycle and become senescent. Senescence provides an early barrier against tumor development by preventing proliferation of cells with damaged DNA. By studying single cells, we show that Cdk activity persists after DNA damage until terminal cell cycle exit. This low level of Cdk activity not only allows cell cycle progression, but also promotes cell cycle exit at a decision point in G2 phase. We find that residual Cdk1/2 activity is required for efficient p21 production, allowing for nuclear sequestration of Cyclin B1, subsequent APC/CCdh1 -dependent degradation of mitotic inducers and induction of senescence. We suggest that the same activity that triggers mitosis in an unperturbed cell cycle enforces senescence in the presence of DNA damage, ensuring a robust response when most needed.


Subject(s)
CDC2 Protein Kinase/genetics , Cellular Senescence/drug effects , Cyclin-Dependent Kinase 2/genetics , Etoposide/pharmacology , G2 Phase Cell Cycle Checkpoints/drug effects , Osteoblasts/drug effects , Antigens, CD , CDC2 Protein Kinase/antagonists & inhibitors , CDC2 Protein Kinase/metabolism , Cadherins/genetics , Cadherins/metabolism , Cell Line , Cell Line, Tumor , Cell Size , Cell Survival/drug effects , Cyclin B1/genetics , Cyclin B1/metabolism , Cyclin-Dependent Kinase 2/antagonists & inhibitors , Cyclin-Dependent Kinase 2/metabolism , Cyclin-Dependent Kinase Inhibitor p21/genetics , Cyclin-Dependent Kinase Inhibitor p21/metabolism , DNA Damage , Epithelial Cells/cytology , Epithelial Cells/drug effects , Epithelial Cells/enzymology , Gene Expression Regulation , Humans , Osteoblasts/cytology , Osteoblasts/enzymology , Pteridines/pharmacology , Purines/pharmacology , Quinolines/pharmacology , Retinal Pigment Epithelium/cytology , Retinal Pigment Epithelium/drug effects , Retinal Pigment Epithelium/enzymology , Signal Transduction , Single-Cell Analysis , Thiazoles/pharmacology
11.
PLoS Pathog ; 12(11): e1005981, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27829070

ABSTRACT

The Spumaretrovirinae, or foamy viruses (FVs) are complex retroviruses that infect many species of monkey and ape. Despite little sequence homology, FV and orthoretroviral Gag proteins perform equivalent functions, including genome packaging, virion assembly, trafficking and membrane targeting. However, there is a paucity of structural information for FVs and it is unclear how disparate FV and orthoretroviral Gag molecules share the same function. To probe the functional overlap of FV and orthoretroviral Gag we have determined the structure of a central region of Gag from the Prototype FV (PFV). The structure comprises two all α-helical domains NtDCEN and CtDCEN that although they have no sequence similarity, we show they share the same core fold as the N- (NtDCA) and C-terminal domains (CtDCA) of archetypal orthoretroviral capsid protein (CA). Moreover, structural comparisons with orthoretroviral CA align PFV NtDCEN and CtDCEN with NtDCA and CtDCA respectively. Further in vitro and functional virological assays reveal that residues making inter-domain NtDCEN-CtDCEN interactions are required for PFV capsid assembly and that intact capsid is required for PFV reverse transcription. These data provide the first information that relates the Gag proteins of Spuma and Orthoretrovirinae and suggests a common ancestor for both lineages containing an ancient CA fold.


Subject(s)
Capsid Proteins/genetics , Gene Products, gag/chemistry , Gene Products, gag/genetics , Spumavirus/genetics , Virus Assembly/physiology , Amino Acid Sequence , Animals , Blotting, Western , Capsid , Cell Line , Humans , Nuclear Magnetic Resonance, Biomolecular , Protein Conformation , Real-Time Polymerase Chain Reaction
13.
PLoS Pathog ; 12(8): e1005860, 2016 08.
Article in English | MEDLINE | ID: mdl-27579920

ABSTRACT

Unlike for other retroviruses, only a few host cell factors that aid the replication of foamy viruses (FVs) via interaction with viral structural components are known. Using a yeast-two-hybrid (Y2H) screen with prototype FV (PFV) Gag protein as bait we identified human polo-like kinase 2 (hPLK2), a member of cell cycle regulatory kinases, as a new interactor of PFV capsids. Further Y2H studies confirmed interaction of PFV Gag with several PLKs of both human and rat origin. A consensus Ser-Thr/Ser-Pro (S-T/S-P) motif in Gag, which is conserved among primate FVs and phosphorylated in PFV virions, was essential for recognition by PLKs. In the case of rat PLK2, functional kinase and polo-box domains were required for interaction with PFV Gag. Fluorescently-tagged PFV Gag, through its chromatin tethering function, selectively relocalized ectopically expressed eGFP-tagged PLK proteins to mitotic chromosomes in a Gag STP motif-dependent manner, confirming a specific and dominant nature of the Gag-PLK interaction in mammalian cells. The functional relevance of the Gag-PLK interaction was examined in the context of replication-competent FVs and single-round PFV vectors. Although STP motif mutated viruses displayed wild type (wt) particle release, RNA packaging and intra-particle reverse transcription, their replication capacity was decreased 3-fold in single-cycle infections, and up to 20-fold in spreading infections over an extended time period. Strikingly similar defects were observed when cells infected with single-round wt Gag PFV vectors were treated with a pan PLK inhibitor. Analysis of entry kinetics of the mutant viruses indicated a post-fusion defect resulting in delayed and reduced integration, which was accompanied with an enhanced preference to integrate into heterochromatin. We conclude that interaction between PFV Gag and cellular PLK proteins is important for early replication steps of PFV within host cells.


Subject(s)
Capsid/metabolism , Protein Serine-Threonine Kinases/metabolism , Retroviridae Infections/metabolism , Spumavirus/metabolism , Virus Integration/physiology , Amino Acid Motifs , Animals , Gene Products, gag/genetics , Gene Products, gag/metabolism , HeLa Cells , Humans , Mice , Phosphorylation/genetics , Protein Domains , Protein Serine-Threonine Kinases/genetics , Rats , Retroviridae Infections/genetics , Spumavirus/genetics
14.
Methods Mol Biol ; 1342: 173-83, 2016.
Article in English | MEDLINE | ID: mdl-26254923

ABSTRACT

Immunofluorescence can be a powerful tool to detect protein levels, intracellular localization, and post-translational modifications. However, standard immunofluorescence provides only a still picture and thus lacks temporal information. Here, we describe a method to extract temporal information from immunofluorescence images of fixed cells. In addition, we provide an optional protocol that uses micropatterns, which increases the accuracy of the method. These methods allow assessing how protein levels, intracellular localization, and post-translational modifications change through the cell cycle.


Subject(s)
Cell Cycle , Fluorescent Antibody Technique/methods , Protein Processing, Post-Translational , Image Processing, Computer-Assisted , Kinetics
15.
Cell Cycle ; 13(17): 2733-43, 2014.
Article in English | MEDLINE | ID: mdl-25486360

ABSTRACT

Upon DNA damage, cell cycle progression is temporally blocked to avoid propagation of mutations. While transformed cells largely maintain the competence to recover from a cell cycle arrest, untransformed cells past the G1/S transition lose mitotic inducers, and thus the ability to resume cell division. This permanent cell cycle exit depends on p21, p53, and APC/C(Cdh1). However, when and how permanent cell cycle exit occurs remains unclear. Here, we have investigated the cell cycle response to DNA damage in single cells that express Cyclin B1 fused to eYFP at the endogenous locus. We find that upon DNA damage Cyclin B1-eYFP continues to accumulate up to a threshold level, which is reached only in G2 phase. Above this threshold, a p21 and p53-dependent nuclear translocation required for APC/C(Cdh1)-mediated Cyclin B1-eYFP degradation is initiated. Thus, cell cycle exit is decoupled from activation of the DNA damage response in a manner that correlates to Cyclin B1 levels, suggesting that G2 activities directly feed into the decision for cell cycle exit. Once Cyclin B1-eYFP nuclear translocation occurs, checkpoint inhibition can no longer promote mitotic entry or re-expression of mitotic inducers, suggesting that nuclear translocation of Cyclin B1 marks the restriction point for permanent cell cycle exit in G2 phase.


Subject(s)
Cell Cycle Checkpoints , Cell Nucleus/metabolism , Cyclin B1/metabolism , G2 Phase , Anaphase-Promoting Complex-Cyclosome/metabolism , Cell Line, Tumor , Cyclin-Dependent Kinase Inhibitor p21/metabolism , DNA Damage , Gene Targeting , Humans , Protein Transport , Proteolysis , Tumor Suppressor Protein p53/metabolism
16.
Retrovirology ; 11: 87, 2014 Oct 08.
Article in English | MEDLINE | ID: mdl-25292281

ABSTRACT

BACKGROUND: One unique feature of the foamy virus (FV) capsid protein Gag is the absence of Cys-His motifs, which in orthoretroviruses are irreplaceable for multitude functions including viral RNA genome recognition and packaging. Instead, FV Gag contains glycine-arginine-rich (GR) sequences at its C-terminus. In case of prototype FV (PFV) these are historically grouped in three boxes, which have been shown to play essential functions in genome reverse transcription, virion infectivity and particle morphogenesis. Additional functions for RNA packaging and Pol encapsidation were suggested, but have not been conclusively addressed. RESULTS: Here we show that released wild type PFV particles, like orthoretroviruses, contain various cellular RNAs in addition to viral genome. Unlike orthoretroviruses, the content of selected cellular RNAs in capsids of PFV vector particles was not altered by viral genome encapsidation. Deletion of individual GR boxes had only minor negative effects (2 to 4-fold) on viral and cellular RNA encapsidation over a wide range of cellular Gag to viral genome ratios examined. Only the concurrent deletion of all three PFV Gag GR boxes, or the substitution of multiple arginine residues residing in the C-terminal GR box region by alanine, abolished both viral and cellular RNA encapsidation (>50 to >3,000-fold reduced), independent of the viral production system used. Consequently, those mutants also lacked detectable amounts of encapsidated Pol and were non-infectious. In contrast, particle release was reduced to a much lower extent (3 to 20-fold). CONCLUSIONS: Taken together, our data provides the first identification of a full-length PFV Gag mutant devoid in genome packaging and the first report of cellular RNA encapsidation into PFV particles. Our results suggest that the cooperative action of C-terminal clustered positively charged residues, present in all FV Gag proteins, is the main viral protein determinant for viral and cellular RNA encapsidation. The viral genome independent efficiency of cellular RNA encapsidation suggests differential packaging mechanisms for both types of RNAs. Finally, this study indicates that analogous to orthoretroviruses, Gag - nucleic acid interactions are required for FV capsid assembly and efficient particle release.


Subject(s)
Arginine/metabolism , Gene Products, gag/metabolism , RNA/metabolism , Spumavirus/physiology , Virus Assembly , Amino Acid Substitution , Cell Line , Gene Products, gag/genetics , Humans , Mutation, Missense , Sequence Deletion , Spumavirus/genetics
17.
Mol Ther ; 22(8): 1460-1471, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24814152

ABSTRACT

Vector systems based on different retroviruses are widely used to achieve stable integration and expression of transgenes. More recently, transient genetic manipulation systems were developed that are based on integration- or reverse transcription-deficient retroviruses. Lack of viral genome integration is desirable not only for reducing tumorigenic potential but also for applications requiring transient transgene expression such as reprogramming or genome editing. However, all existing transient retroviral vector systems rely on virus-encoded encapsidation sequences for the transfer of heterologous genetic material. We discovered that the transient transgene expression observed in target cells transduced by reverse transcriptase-deficient foamy virus (FV) vectors is the consequence of subgenomic RNA encapsidation into FV particles. Based on this initial observation, we describe here the establishment of FV vectors that enable the efficient transient expression of various transgenes by packaging, transfer, and de novo translation of nonviral RNAs both in vitro and in vivo. Transient transgene expression levels were comparable to integrase-deficient vectors but, unlike the latter, declined to background levels within a few days. Our results show that this new FV vector system provides a useful, novel tool for efficient transient genetic manipulation of target tissues by transfer of nonviral RNAs.


Subject(s)
Fibroblasts/virology , RNA/metabolism , Spumavirus/genetics , Transduction, Genetic , Animals , Cell Line, Tumor , Fibroblasts/cytology , Gene Transfer Techniques , Genetic Vectors/genetics , Genetic Vectors/metabolism , HEK293 Cells , Humans , In Vitro Techniques , Mice , RNA-Directed DNA Polymerase/metabolism , Spumavirus/metabolism , Transgenes
18.
Mol Cell ; 53(5): 843-53, 2014 Mar 06.
Article in English | MEDLINE | ID: mdl-24582498

ABSTRACT

During the cell cycle, DNA duplication in S phase must occur before a cell divides in mitosis. In the intervening G2 phase, mitotic inducers accumulate, which eventually leads to a switch-like rise in mitotic kinase activity that triggers mitotic entry. However, when and how activation of the signaling network that promotes the transition to mitosis occurs remains unclear. We have developed a system to reduce cell-cell variation and increase accuracy of fluorescence quantification in single cells. This allows us to use immunofluorescence of endogenous marker proteins to assess kinetics from fixed cells. We find that mitotic phosphorylations initially occur at the completion of S phase, showing that activation of the mitotic entry network does not depend on protein accumulation through G2. Our data show insights into how mitotic entry is linked to the completion of S phase and forms a quantitative resource for mathematical models of the human cell cycle.


Subject(s)
G2 Phase/genetics , Mitosis/genetics , S Phase/genetics , Bacterial Proteins/chemistry , Cell Cycle , Cell Line, Tumor , Centrosome/metabolism , DNA Replication , Fibronectins/chemistry , Genetic Markers , Humans , Image Processing, Computer-Assisted , Kinetics , Kinetochores/chemistry , Luminescent Proteins/chemistry , Microscopy, Fluorescence , Models, Theoretical , Phosphorylation , RNA, Small Interfering/metabolism , Time Factors
19.
Viruses ; 5(4): 1023-41, 2013 Mar 26.
Article in English | MEDLINE | ID: mdl-23531622

ABSTRACT

Gag proteins play an important role in many stages of the retroviral replication cycle. They orchestrate viral assembly, interact with numerous host cell proteins, engage in regulation of viral gene expression, and provide the main driving force for virus intracellular trafficking and budding. Foamy Viruses (FV), also known as spumaviruses, display a number of unique features among retroviruses. Many of these features can be attributed to their Gag proteins. FV Gag proteins lack characteristic orthoretroviral domains like membrane-binding domains (M domains), the major homology region (MHR), and the hallmark Cys-His motifs. In contrast, they contain several distinct domains such as the essential Gag-Env interaction domain and the glycine and arginine rich boxes (GR boxes). Furthermore, FV Gag only undergoes limited maturation and follows an unusual pathway for nuclear translocation. This review summarizes the known FV Gag domains and motifs and their functions. In particular, it provides an overview of the unique structural and functional properties that distinguish FV Gag proteins from orthoretroviral Gag proteins.


Subject(s)
Gene Products, gag/metabolism , Spumavirus/physiology , Animals , Gene Products, gag/chemistry , Host-Pathogen Interactions , Humans , Protein Binding , Protein Interaction Domains and Motifs , Virus Replication
20.
Retrovirology ; 10: 26, 2013 Mar 05.
Article in English | MEDLINE | ID: mdl-23497255

ABSTRACT

BACKGROUND: SAMHD1 is a triphosphohydrolase that restricts the replication of HIV-1 and SIV in myeloid cells. In macrophages and dendritic cells, SAMHD1 restricts virus replication by diminishing the deoxynucleotide triphosphate pool to a level below that which supports lentiviral reverse transcription. HIV-2 and related SIVs encode the accessory protein Vpx to induce the proteasomal degradation of SAMHD1 following virus entry. While SAMHD1 has been shown to restrict HIV-1 and SIV, the breadth of its restriction is not known and whether other viruses have a means to counteract the restriction has not been determined. RESULTS: We show that SAMHD1 restricts a wide array of divergent retroviruses, including the alpha, beta and gamma classes. Murine leukemia virus was restricted by SAMHD1 in macrophages yet removal of SAMHD1 did not alleviate the block to infection because of an additional block to viral nuclear import. Prototype foamy virus (PFV) and Human T cell leukemia virus type I (HTLV-1) were the only retroviruses tested that were not restricted by SAMHD1. PFV reverse transcribes predominantly prior to entry and thus is unaffected by the dNTP level in the target cell. It is possible that HTLV-1 has a mechanism to render the virus resistant to SAMHD1-mediated restriction. CONCLUSION: The results suggest that SAMHD1 has broad anti-retroviral activity against which most viruses have not found an escape.


Subject(s)
Macrophages/virology , Monomeric GTP-Binding Proteins/pharmacology , Myeloid Cells/virology , Retroviridae/drug effects , Retroviridae/pathogenicity , Virus Replication/drug effects , Cell Line , Dendritic Cells/metabolism , Dendritic Cells/virology , HIV-1/drug effects , HIV-1/physiology , Humans , Jurkat Cells , Macrophages/immunology , Monomeric GTP-Binding Proteins/metabolism , Myeloid Cells/metabolism , Retroviridae/classification , Retroviridae/physiology , SAM Domain and HD Domain-Containing Protein 1
SELECTION OF CITATIONS
SEARCH DETAIL
...