Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Front Chem ; 7: 268, 2019.
Article in English | MEDLINE | ID: mdl-31119122

ABSTRACT

The expansion of renewable energy and the growing number of electric vehicles and mobile devices are demanding improved and low-cost electrochemical energy storage. In order to meet the future needs for energy storage, novel material systems with high energy densities, readily available raw materials, and safety are required. Currently, lithium and lead mainly dominate the battery market, but apart from cobalt and phosphorous, lithium may show substantial supply challenges prospectively, as well. Therefore, the search for new chemistries will become increasingly important in the future, to diversify battery technologies. But which materials seem promising? Using a selection algorithm for the evaluation of suitable materials, the concept of a rechargeable, high-valent all-solid-state aluminum-ion battery appears promising, in which metallic aluminum is used as the negative electrode. On the one hand, this offers the advantage of a volumetric capacity four times higher (theoretically) compared to lithium analog. On the other hand, aluminum is the most abundant metal in the earth's crust. There is a mature industry and recycling infrastructure, making aluminum very cost efficient. This would make the aluminum-ion battery an important contribution to the energy transition process, which has already started globally. So far, it has not been possible to exploit this technological potential, as suitable positive electrodes and electrolyte materials are still lacking. The discovery of inorganic materials with high aluminum-ion mobility-usable as solid electrolytes or intercalation electrodes-is an innovative and required leap forward in the field of rechargeable high-valent ion batteries. In this review article, the constraints for a sustainable and seminal battery chemistry are described, and we present an assessment of the chemical elements in terms of negative electrodes, comprehensively motivate utilizing aluminum, categorize the aluminum battery field, critically review the existing positive electrodes and solid electrolytes, present a promising path for the accelerated development of novel materials and address problems of scientific communication in this field.

2.
ACS Appl Mater Interfaces ; 11(9): 9291-9300, 2019 Mar 06.
Article in English | MEDLINE | ID: mdl-30741532

ABSTRACT

We investigated the insertion-extraction behaviors of Li and Na ions in graphitic materials using solid-state NMR. A unique advantage of high-degree 13C-isotope enrichment of graphitic material allowed sensitive and metastable graphite intercalation compounds to be measured in a short time. Ex situ 13C magic-angle spinning NMR spectra of 13C fine-grained graphite are presented as a function of state-of-charge. The observations are discussed with respect to graphite intercalation phenomena, which include the effects of charge transfer and the demagnetizing field. Dramatic narrowing of the 13C NMR signal in metal-intercalated graphite evidences quasi-complete charge transfer occurring between lithium and graphite host material and resulting in reducing the macroscopic field effects. Upon Na insertion, incomplete charge transfer is observed and explained by inaccessibility of graphitic interlayer space for Na ions in our study. In addition, critical issues of reversibility of Li- and Na-ion electrochemical cells and solid electrolyte interphase formation are considered on the atomic scale. The knowledge gained in the present work can be applied to advanced high-power-density electrode materials for safe and fast-charging metal-ion batteries or for novel spintronic concepts with controlled spin-polarized charge carrier injection and transport combined with the possibility to manipulate magnetic anisotropy.

3.
J Phys Condens Matter ; 28(22): 225001, 2016 06 08.
Article in English | MEDLINE | ID: mdl-27173497

ABSTRACT

Oxygen migration in perovskites is well known to occur via vacancies along the TiO6 octahedron edges. Ionic conduction depends further on the orientation of the crystal in the electric field. To study the anisotropy in cubic SrTiO3 single crystals, temperature-dependent electroformation measurements ranging from 11 °C to 50 °C have been conducted for representative crystallographic directions within the crystal system. Electroformation of pure SrTiO3 follows an Arrhenius behavior, implying an ionic migration process of intrinsic oxygen defects. Activation energies E A for oxygen vacancy migration have been determined to 0.70 eV for [Formula: see text] and [Formula: see text] directions in contrast to 0.77 eV for [Formula: see text]. Mobility of oxygen vacancies is enhanced in [Formula: see text] compared to [Formula: see text] and [Formula: see text] by up to half an order of magnitude. A migration model based on atomistic migration paths and their multiplicities accounts for these experimental variations in mobility.

4.
Chemistry ; 21(46): 16601-8, 2015 Nov 09.
Article in English | MEDLINE | ID: mdl-26395985

ABSTRACT

With the constant growth of the lithium battery market and the introduction of electric vehicles and stationary energy storage solutions, the low abundance and high price of lithium will greatly impact its availability in the future. Thus, a diversification of electrochemical energy storage technologies based on other source materials is of great relevance. Sodium is energetically similar to lithium but cheaper and more abundant, which results in some already established stationary concepts, such as Na-S and ZEBRA cells. The most significant bottleneck for these technologies is to find effective solid ionic conductors. Thus, the goal of this work is to identify new ionic conductors for Na ions in ternary Na oxides. For this purpose, the Voronoi-Dirichlet approach has been applied to the Inorganic Crystal Structure Database and some new procedures are introduced to the algorithm implemented in the programme package ToposPro. The main new features are the use of data mined values, which are then used for the evaluation of void spaces, and a new method of channel size calculation. 52 compounds have been identified to be high-potential candidates for solid ionic conductors. The results were analysed from a crystallographic point of view in combination with phenomenological requirements for ionic conductors and intercalation hosts. Of the most promising candidates, previously reported compounds have also been successfully identified by using the employed algorithm, which shows the reliability of the method.

5.
Chem Commun (Camb) ; 50(6): 701-3, 2014 Jan 21.
Article in English | MEDLINE | ID: mdl-24284378

ABSTRACT

A selective and specific inhibition of the catalase mimetic activity but not SOD-like activity of Pt-apoferritin can be achieved through the choice of the inhibitor. The recovery of activity using a reducing agent was explored and proven to successfully restore the surface-chemistry of NPs.


Subject(s)
Apoferritins/chemistry , Apoferritins/metabolism , Biomimetics , Platinum/chemistry , Apoferritins/antagonists & inhibitors , Enzyme Activation/drug effects , Enzyme Inhibitors/pharmacology , Hydrogen Peroxide/chemistry , Nanoparticles/chemistry , Reducing Agents/chemistry , Surface Properties
6.
Nano Lett ; 10(1): 219-23, 2010 Jan.
Article in English | MEDLINE | ID: mdl-20017497

ABSTRACT

The great potential for medical applications of inorganic nanoparticles in living organisms is severely restricted by the concern that nanoparticles can harmfully interact with biological systems, such as lipid membranes or cell proteins. To enable an uptake of such nanoparticles by cells without harming their membranes, platinum nanoparticles were synthesized within cavities of hollow protein nanospheres (apoferritin). In vitro, the protein-platinum nanoparticles show good catalytic efficiency and long-term stability. Subsequently the particles were tested after ferritin-receptor-mediated incorporation in human intestinal Caco-2 cells. Upon externally induced stress, for example, with hydrogen peroxide, the oxygen species in the cells decreased and the viability of the cells increased.


Subject(s)
Apoferritins/chemistry , Metal Nanoparticles/chemistry , Nanotechnology/methods , Platinum/chemistry , Antioxidants/chemistry , Caco-2 Cells , Cell Survival , Epithelial Cells/cytology , Humans , Hydrogen Peroxide/chemistry , Microscopy, Electron, Transmission/methods , Nanoparticles/chemistry , Nanotechnology/instrumentation , Oxygen/chemistry , Proteins/chemistry , Reactive Oxygen Species
SELECTION OF CITATIONS
SEARCH DETAIL
...