Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Contrib Mineral Petrol ; 178(9): 64, 2023.
Article in English | MEDLINE | ID: mdl-38617191

ABSTRACT

Despite the first-order importance of crystallisation-differentiation for arc magma evolution, several other processes contribute to their compositional diversity. Among them is the remelting of partly crystallised magmas, also known as cumulate melting or 'petrological cannibalism'. The impact of this process on the plutonic record is poorly constrained. We investigate a nepheline-normative dyke suite close to the Blumone gabbros, a large amphibole-gabbro unit of the Tertiary Southern Alpine Adamello igneous complex. The compositions of the studied dykes are characterised by low SiO2 (43-46 wt. %), MgO (5.0-7.2 wt. %), Ni (18-40 µg/g), and high Al2O3 (20.2-22.0 wt. %) contents. Phenocrystic plagioclase in these dykes exhibits major, trace, and Sr isotope compositions similar to Blumone cumulate plagioclase, suggesting a genetic link between the nepheline-normative dykes and the amphibole-gabbro cumulates. We tested this hypothesis by performing saturation experiments on a nepheline-normative dyke composition in an externally heated pressure vessel at 200 MPa between 975 and 1100 °C at fO2 conditions close to the Ni-NiO buffer. Plagioclase and spinel are near-liquidus phases at and above 1050 °C, contrasting with the typical near-liquidus olivine ± spinel assemblage in hydrous calc-alkaline basalts. The alkaline nature of the dykes results from the abundance of amphibole in the protolith, consistent with melting of amphibole-gabbro cumulates. We modelled the heat budget from the repeated injection of basaltic andesite into a partly crystallised amphibole-gabbro cumulate. The results of this model show that no more than 7% of the cumulate pile reaches temperatures high enough to produce nepheline-normative melts. We propose that such nepheline-normative dykes are a hallmark of hydrous cumulate melting in subvolcanic plumbing systems. Therefore, ne-normative dykes in arc batholiths may indicate periods with high magma fluxes. Supplementary Information: The online version contains supplementary material available at 10.1007/s00410-023-02047-3.

2.
Contrib Mineral Petrol ; 174(8): 69, 2019.
Article in English | MEDLINE | ID: mdl-31423015

ABSTRACT

Western Tethyan peridotites exposed in the European Alps show limited amounts of partial melting and mostly fertile compositions. Here we investigate the Civrari Ophiolite (northwestern Italy), which is composed of depleted spinel-harzburgites and serpentinites associated with MOR-type gabbros and basalts. The ultramafic rocks are unique amongst western Tethyan peridotites, showing homogeneous residual compositions after ~ 15% near-fractional melting, lack of pervasive melt percolation and mineral compositions that indicate high-temperature equilibration ≥ 1200 °C. Clinopyroxene chemistry records some of the lowest abundances of Na2O, Ce, and Zr/Hf amongst abyssal peridotites worldwide, suggesting that most abyssal peridotites have been affected by variable degrees of melt retention upon melting or cryptic melt percolation. Locally, cryptic MORB-like melt migration in Civrari peridotites produced orthopyroxene + plagioclase intergrowth around reacted clinopyroxene. These clinopyroxene preserve micron-scale chemical zoning indicating rapid cooling after melt crystallization. 143Nd/144Nd isotopic data indicate that Civrari mantle rocks, gabbros, and basalts are not in isotopic equilibrium. Civrari spinel-peridotites represent a highly radiogenic endmember amongst Western Tethys depleted spinel-peridotites, which together form a partial melting errochron of 273 Ma ± 24 Ma. Ancient near-fractional melting and cryptic melt-rock reaction cause variations in radiogenic εNd and εHf, leading to isotopic heterogeneity of Western Tethys mantle rocks. Such inherited signatures in mantle rocks are most likely to be preserved along (ultra-)slow-spreading systems and ocean-continent transition zones.

3.
Contrib Mineral Petrol ; 173(5): 38, 2018.
Article in English | MEDLINE | ID: mdl-29681649

ABSTRACT

The subduction system in southern Patagonia provides direct evidence for the variability of the position of an active continental arc with respect to the subducting plate through time, but the consequences on the arc magmatic record are less well studied. Here we present a geochemical and geochronological study on small plutons and dykes from the upper crust of the southern Patagonian Andes at ~ 51°S, which formed as a result of the subduction of the Nazca and Antarctic plates beneath the South American continent. In situ U-Pb geochronology on zircons and bulk rock geochemical data of plutonic and dyke rocks are used to constrain the magmatic evolution of the retro-arc over the last 30 Ma. We demonstrate that these combined U-Pb and geochemical data for magmatic rocks track the temporal and spatial migration of the active arc, and associated retro-arc magmatism. Our dataset indicates that the rear-arc area is characterized by small volumes of alkaline basaltic magmas at 29-30 Ma that are characterized by low La/Nb and Th/Nb ratios with negligible arc signatures. Subsequent progressive eastward migration of the active arc culminated with the emplacement of calc-alkaline plutons and dikes ~ 17-16 Ma with elevated La/Nb and Th/Nb ratios and typical subduction signatures constraining the easternmost position of the southern Patagonian batholith at that time. Geochemical data on the post-16 Ma igneous rocks including the Torres del Paine laccolith indicate an evolution to transitional K-rich calc-alkaline magmatism at 12.5 ± 0.2 Ma. We show that trace element ratios such as Nb/Ta and Dy/Yb systematically decrease with increasing SiO2, for both the 17-16 Ma calc-alkaline and the 12-13 Ma K-rich transitional magmatism. In contrast, Th/Nb and La/Nb monitor the changes in the source composition of these magmas. We suggest that the transition from the common calc-alkaline to K-rich transitional magmatism involves a change in the source component, while the trace element ratios, such as Nb/Ta and Dy/Yb, of derivative higher silica content liquids are controlled by similar fractionating mineral assemblages. Analysis of a global compilation of Nb/Ta ratios of arc magmatic rocks and simple geochemical models indicate that amphibole and variable amounts of biotite exert a major control on the low Dy/Yb and Nb/Ta of derivative granitic liquids. Lastly, we suggest that the low Nb/Ta ratio of silica-rich magmas is a natural consequence of biotite fractionation and that alternative models such as amphibolite melting in subduction zones and diffusive fractionation are not required to explain the Nb/Ta ratio of the upper continental crust.

4.
Sci Rep ; 6: 23168, 2016 Mar 24.
Article in English | MEDLINE | ID: mdl-27009463

ABSTRACT

The temporal coincidence between large igneous provinces (LIPs) and mass extinctions has led many to pose a causal relationship between the two. However, there is still no consensus on a mechanistic model that explains how magmatism leads to the turnover of terrestrial and marine plants, invertebrates and vertebrates. Here we present a synthesis of ammonite biostratigraphy, isotopic data and high precision U-Pb zircon dates from the Triassic-Jurassic (T-J) and Pliensbachian-Toarcian (Pl-To) boundaries demonstrating that these biotic crises are both associated with rapid change from an initial cool period to greenhouse conditions. We explain these transitions as a result of changing gas species emitted during the progressive thermal erosion of cratonic lithosphere by plume activity or internal heating of the lithosphere. Our petrological model for LIP magmatism argues that initial gas emission was dominated by sulfur liberated from sulfide-bearing cratonic lithosphere before CO2 became the dominant gas. This model offers an explanation of why LIPs erupted through oceanic lithosphere are not associated with climatic and biotic crises comparable to LIPs emitted through cratonic lithosphere.


Subject(s)
Carbon/analysis , Geologic Sediments/analysis , Oxygen/analysis , Climate , Extinction, Biological , Greenhouse Effect , Temperature
5.
ChemSusChem ; 8(22): 3847-52, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26471762

ABSTRACT

Herein, we present the precise stoichiometric control of methlyammonium lead iodide perovskite thin-films using high vacuum dual-source vapor-phase deposition. We found that UV/Vis absorption and emission spectra were inadequate for assessing precisely the perovskite composition. Alternatively, inductively coupled plasma mass spectrometry (ICP-MS) is used to give precise, reproducible, quantitative measurements of the I/Pb ratio without systematic errors that often result from varying device thicknesses and morphologies. This controlled deposition method enables better understanding of the evaporation and deposition processes; methylammonium iodide evaporation appears omnidirectional, controlled using the chamber pressure and incorporated in the film through interaction with the unidirectionally evaporated PbI2. Furthermore, these thin-films were incorporated into solar cell device architectures with the best photovoltaic performance and reproducibility obtained for devices made with stoichiometric perovskite active layers. Additionally, and particularly pertinent to the field of perovskite photovoltaics, we found that the I-V hysteresis was unaffected by varying the film stoichiometry.


Subject(s)
Calcium Compounds/chemistry , Electric Power Supplies , Oxides/chemistry , Sunlight , Titanium/chemistry , Volatilization
6.
Anal Chem ; 85(5): 2589-94, 2013 Mar 05.
Article in English | MEDLINE | ID: mdl-23330806

ABSTRACT

Knowing the uncertainty of the net signal activity is essential in order to calculate the concentration uncertainty of an analyte in a sample or to decide whether the analyte activity is sufficient for detection. The net signal activity is usually calculated as a difference between the gross signal activity and the blank activity obtained from a material that is added to the sample during the analysis (e.g., acid to dilute the sample or gas to transport it as an aerosol). It is often assumed a priori that the analyte concentration in the blank is the same for any blank measurement, and the dispersion in the blank activities obtained from the individual measurements is related to the intrinsic imprecision of the measurement process only. This case can be called stationary; the relevant uncertainty calculation methods are widely known and used. However, in real applications where only some of the blank activity sources are well characterized, the blank stationarity needs to be demonstrated. The nonstationarity of the blank has serious consequences: (1) for a "well-known background", the net signal uncertainty increases, since it includes the variance of the nonstationary background component; (2) for paired measurements, the net signal uncertainty does not change but cannot be estimated from one single blank analysis, thus compromising the utility of the paired measurement approach. Presenting the lower and upper uncertainty limits is appropriate for the evaluation of the uncertainty of a net signal if the assumption of a stationary blank is questionable.

SELECTION OF CITATIONS
SEARCH DETAIL
...