Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
Add more filters










Publication year range
1.
Phys Rev E ; 108(5-1): 054103, 2023 Nov.
Article in English | MEDLINE | ID: mdl-38115457

ABSTRACT

We consider a quantum Otto cycle with a q-deformed quantum oscillator working substance and classical thermal baths. We investigate the influence of the quantum statistical deformation parameter q on the work and efficiency of the cycle. In usual quantum Otto cycle, a Hamiltonian parameter is varied during the quantum adiabatic stages while the quantum statistical character of the working substance remains fixed. We point out that even if the Hamiltonian parameters are not changing, work can be harvested by quantum statistical changes of the working substance. Work extraction from thermal resources using quantum statistical mutations of the working substance makes a quantum Otto cycle without any classical analog.

2.
Phys Rev E ; 107(4): L042103, 2023 Apr.
Article in English | MEDLINE | ID: mdl-37198840

ABSTRACT

Enantiomers are chiral molecules that exist in right-handed and left-handed conformations. Optical techniques of enantiomers' detection are widely employed to discriminate between left- and right-handed molecules. However, identical spectra of enantiomers make enantiomer detection a very challenging task. Here, we investigate the possibility of exploiting thermodynamic processes for enantiomer detection. In particular, we employ a quantum Otto cycle in which a chiral molecule described by a three-level system with cyclic optical transitions is considered a working medium. Each energy transition of the three-level system is coupled with an external laser drive. We find that the left- and right-handed enantiomers operate as a quantum heat engine and a thermal accelerator, respectively, when the overall phase is the control parameter. In addition, both enantiomers act as heat engines by keeping the overall phase constant and using the laser drives' detuning as the control parameter during the cycle. However, the molecules can still be distinguished because both cases' extracted work and efficiency are quantitatively very different. Accordingly, the left- and right-handed molecules can be distinguished by evaluating the work distribution in the Otto cycle.

3.
Phys Rev E ; 106(5-1): 054114, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36559439

ABSTRACT

Recent experiments at the nanoscales confirm that thermal rectifiers, the thermal equivalent of electrical diodes, can operate in the quantum regime. We present a thorough investigation of the effect of different particle exchange statistics, coherence, and collective interactions on the quantum heat transport of rectifiers with two-terminal junctions. Using a collision model approach to describe the open system dynamics, we obtain a general expression of the nonlinear heat flow that fundamentally deviates from the Landauer formula whenever quantum statistical or coherence asymmetries are present in the bath particles. Building on this, we show that heat rectification is possible even with symmetric medium-bath couplings if the two baths differ in quantum statistics or coherence. Furthermore, the associated thermal conductance vanishes exponentially at low temperatures as in the Coulomb-blockade effect. However, at high temperatures it acquires a power-law behavior depending on the quantum statistics. Our results can be significant for heat management in hybrid open quantum systems or solid-state thermal circuits.

4.
Phys Rev E ; 106(2-1): 024137, 2022 Aug.
Article in English | MEDLINE | ID: mdl-36110016

ABSTRACT

We investigate quantum Otto engine and refrigeration cycles of a time-dependent harmonic oscillator operating under the conditions of maximum Ω function, a trade-off objective function which represents a compromise between energy benefits and losses for a specific job, for both adiabatic and nonadiabatic (sudden) frequency modulations. We derive analytical expressions for the efficiency and coefficient of performance of the Otto cycle. For the case of adiabatic driving, we point out that in the low-temperature regime, the harmonic Otto engine (refrigerator) can be mapped to Feynman's ratchet and pawl model which is a steady-state classical heat engine. For the sudden switch of frequencies, we obtain loop-like behavior of the efficiency-work curve, which is characteristic of irreversible heat engines. Finally, we discuss the behavior of cooling power at maximum Ω function.

5.
Entropy (Basel) ; 24(8)2022 Aug 20.
Article in English | MEDLINE | ID: mdl-36010826

ABSTRACT

The high energy transfer efficiency of photosynthetic complexes has been a topic of research across many disciplines. Several attempts have been made in order to explain this energy transfer enhancement in terms of quantum mechanical resources such as energetic and vibration coherence and constructive effects of environmental noise. The developments in this line of research have inspired various biomimetic works aiming to use the underlying mechanisms in biological light harvesting complexes for the improvement of synthetic systems. In this article, we explore the effect of an auxiliary hierarchically structured environment interacting with a system on the steady-state heat transport across the system. The cold and hot baths are modeled by a series of identically prepared qubits in their respective thermal states, and we use a collision model to simulate the open quantum dynamics of the system. We investigate the effects of system-environment, inter-environment couplings and coherence of the structured environment on the steady state heat flux and find that such a coupling enhances the energy transfer. Our calculations reveal that there exists a non-monotonic and non-trivial relationship between the steady-state heat flux and the mentioned parameters.

6.
Phys Rev E ; 104(5-1): 054137, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34942835

ABSTRACT

We investigate heat rectification in a two-qubit system coupled via the Dzyaloshinskii-Moriya (DM) interaction. We derive analytical expressions for heat currents and thermal rectification and provide possible physical mechanisms behind the observed results. We show that the anisotropy of DM interaction in itself is insufficient for heat rectification, and some other form of asymmetry is needed. We employ off-resonant qubits as the source of this asymmetry. We find the regime of parameters for higher rectification factors by examining the analytical expressions of rectification obtained from a global master equation solution. In addition, it is shown that the direction and quality of rectification can be controlled via various system parameters. Furthermore, we compare the influence of different orientations of the DM field anisotropy on the performance of heat rectification. Finally, we investigate the possible interplay between quantum correlations and the performance of the quantum thermal rectifier. We find that asymmetry in the coherences is a fundamental resource for the performance of the quantum thermal rectifier.

7.
Entropy (Basel) ; 23(8)2021 Jul 31.
Article in English | MEDLINE | ID: mdl-34441135

ABSTRACT

We investigate the implications of quantum Darwinism in a composite quantum system with interacting constituents exhibiting a decoherence-free subspace. We consider a two-qubit system coupled to an N-qubit environment via a dephasing interaction. For excitation preserving interactions between the system qubits, an analytical expression for the dynamics is obtained. It demonstrates that part of the system Hilbert space redundantly proliferates its information to the environment, while the remaining subspace is decoupled and preserves clear non-classical signatures. For measurements performed on the system, we establish that a non-zero quantum discord is shared between the composite system and the environment, thus violating the conditions of strong Darwinism. However, due to the asymmetry of quantum discord, the information shared with the environment is completely classical for measurements performed on the environment. Our results imply a dichotomy between objectivity and classicality that emerges when considering composite systems.

8.
Sci Rep ; 11(1): 12981, 2021 Jun 21.
Article in English | MEDLINE | ID: mdl-34155244

ABSTRACT

We propose to use a few-qubit system as a compact quantum refrigerator for cooling an interacting multi-qubit system. We specifically consider a central qubit coupled to N ancilla qubits in a so-called spin-star model to be used as refrigerant by means of short interactions with a many-qubit system to be cooled. We first show that if the interaction between the qubits is of the longitudinal and ferromagnetic Ising model form, the central qubit is colder than the environment. We summarize how preparing the refrigerant qubits using the spin-star model paves the way for the cooling of a many-qubit system by means of a collisional route to thermalization. We discuss a simple refrigeration cycle, considering the operation cost and cooling efficiency, which can be controlled by N and the qubit-qubit interaction strength. Besides, bounds on the achievable temperature are established. Such few-qubit compact quantum refrigerators can be significant to reduce dimensions of quantum technology applications, can be easy to integrate into all-qubit systems, and can increase the speed and power of quantum computing and thermal devices.

9.
Phys Rev E ; 102(6-1): 062123, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33466082

ABSTRACT

We analyze the performance of a quantum Otto cycle, employing a time-dependent harmonic oscillator as the working fluid undergoing sudden expansion and compression strokes during the adiabatic stages, coupled to a squeezed reservoir. First, we show that the maximum efficiency that our engine can achieve is 1/2 only, which is in contrast with earlier studies claiming unit efficiency under the effect of a squeezed reservoir. Then, in the high-temperature limit, we obtain analytic expressions for the upper bound on the efficiency as well as on the coefficient of performance of the Otto cycle. The obtained bounds are independent of the parameters of the system and depend on the reservoir parameters only. Additionally, with a hot squeezed thermal bath, we obtain an analytic expression for the efficiency at maximum work which satisfies the derived upper bound. Further, in the presence of squeezing in the cold reservoir, we specify an operational regime for the Otto refrigerator otherwise forbidden in the standard case. Finally, we find the cost of creating a squeezed state from the thermal state and show that in order to harvest the benefits of squeezing, it is sufficient to squeeze only one mode of the reservoir in resonance with the transition frequency of the working fluid. Further, we show that when the cost of squeezing is included in the definition of the operational efficiency of the engine, the advantages of squeezing fade away. Still, being purely quantum mechanical fuel in nature, squeezed reservoirs are beneficial in their own way by providing us with more compact energy storage medium or offering effectively high-temperature baths without being actually too hot.

10.
Phys Rev E ; 100(1-1): 012109, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31499932

ABSTRACT

We suggest alternative quantum Otto engines, using heat bath algorithmic cooling with a partner pairing algorithm instead of isochoric cooling and using quantum swap operations instead of quantum adiabatic processes. Liquid state nuclear magnetic resonance systems in a single entropy sink are treated as working fluids. The extractable work and thermal efficiency are analyzed in detail for four-stroke and two-stroke types of alternative quantum Otto engines. The role of the heat bath algorithmic cooling in these cycles is to use a single entropy sink instead of two so that a single incoherent energy resource can be harvested and processed using an algorithmic quantum heat engine. Our results indicate a path to programmable quantum heat engines as analogs of quantum computers beyond traditional heat engine cycles. We find that for our NMR system example implementation of quantum algorithmic heat engine stages yields more power due to increased cycle speeds.

11.
Phys Rev E ; 99(4-1): 042121, 2019 Apr.
Article in English | MEDLINE | ID: mdl-31108591

ABSTRACT

We put forward a quantum-optical model for a thermal diode based on heat transfer between two thermal baths through a pair of interacting qubits. We find that if the qubits are coupled by a Raman field that induces an anisotropic interaction, heat flow can become nonreciprocal and undergoes rectification even if the baths produce equal dissipation rates of the qubits, and these qubits can be identical, i.e., mutually resonant. The heat flow rectification is explained by four-wave mixing and Raman transitions between dressed states of the interacting qubits and is governed by a global master equation. The anisotropic two-qubit interaction is the key to the operation of this simple quantum thermal diode, whose resonant operation allows for high-efficiency rectification of large heat currents. Effects of spatial overlap of the baths are addressed. We discuss the possible realizations of the model in various platforms, including optomechanical setups, systems of trapped ions, and circuit QED.

12.
Phys Rev E ; 99(4-1): 042145, 2019 Apr.
Article in English | MEDLINE | ID: mdl-31108663

ABSTRACT

We investigate the evolution of a target qubit caused by its multiple random collisions with N-qubit clusters. Depending on the cluster state, the evolution of the target qubit may correspond to its effective interaction with a thermal bath, a coherent (laser) drive, or a squeezed bath. In cases where the target qubit relaxes to a thermal state, its dynamics can exhibit a quantum advantage, whereby the target-qubit temperature can be scaled up proportionally to N^{2} and the thermalization time can be shortened by a similar factor, provided the appropriate coherence in the cluster is prepared by nonthermal means. We dub these effects quantum superthermalization because of the analogies to superradiance. Experimental realizations of these effects are suggested.

13.
Phys Rev E ; 99(3-1): 032108, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30999442

ABSTRACT

We consider a finite-time quantum Otto cycle with single- and two spin-1/2 systems as its working medium. To mimic adiabatic dynamics at a finite time, we employ a shortcut-to-adiabaticity technique and evaluate the performance of the engine including the cost of the shortcut. We compare our results with the true adiabatic and nonadiabatic performances of the same cycle. Our findings indicate that the use of the shortcut-to-adiabaticity scheme significantly enhances the performance of the quantum Otto engine as compared to its adiabatic and nonadiabatic counterparts for different figures of merit.

14.
Phys Rev E ; 97(4-1): 042127, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29758690

ABSTRACT

Quantum interference is at the heart of what sets the quantum and classical worlds apart. We demonstrate that quantum interference effects involving a many-body working medium is responsible for genuinely nonclassical features in the performance of a quantum heat engine. The features with which quantum interference manifests itself in the work output of the engine depends strongly on the extensive nature of the working medium. While identifying the class of work substances that optimize the performance of the engine, our results shed light on the optimal size of such media of quantum workers to maximize the work output and efficiency of quantum energy machines.

15.
Phys Rev E ; 96(6-1): 062120, 2017 Dec.
Article in English | MEDLINE | ID: mdl-29347310

ABSTRACT

We propose a quantum heat engine composed of two superconducting transmission line resonators interacting with each other via an optomechanical-like coupling. One resonator is periodically excited by a thermal pump. The incoherently driven resonator induces coherent oscillations in the other one due to the coupling. A limit cycle, indicating finite power output, emerges in the thermodynamical phase space. The system implements an all-electrical analog of a photonic piston. Instead of mechanical motion, the power output is obtained as a coherent electrical charging in our case. We explore the differences between the quantum and classical descriptions of our system by solving the quantum master equation and classical Langevin equations. Specifically, we calculate the mean number of excitations, second-order coherence, as well as the entropy, temperature, power, and mean energy to reveal the signatures of quantum behavior in the statistical and thermodynamic properties of the system. We find evidence of a quantum enhancement in the power output of the engine at low temperatures.

16.
Phys Rev E ; 93(1): 012145, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26871061

ABSTRACT

We investigate scaling of work and efficiency of a photonic Carnot engine with a number of quantum coherent resources. Specifically, we consider a generalization of the "phaseonium fuel" for the photonic Carnot engine, which was first introduced as a three-level atom with two lower states in a quantum coherent superposition by M. O. Scully, M. Suhail Zubairy, G. S. Agarwal, and H. Walther [Science 299, 862 (2003)SCIEAS0036-807510.1126/science.1078955], to the case of N+1 level atoms with N coherent lower levels. We take into account atomic relaxation and dephasing as well as the cavity loss and derive a coarse-grained master equation to evaluate the work and efficiency analytically. Analytical results are verified by microscopic numerical examination of the thermalization dynamics. We find that efficiency and work scale quadratically with the number of quantum coherent levels. Quantum coherence boost to the specific energy (work output per unit mass of the resource) is a profound fundamental difference of quantum fuel from classical resources. We consider typical modern resonator set ups and conclude that multilevel phaseonium fuel can be utilized to overcome the decoherence in available systems. Preparation of the atomic coherences and the associated cost of coherence are analyzed and the engine operation within the bounds of the second law is verified. Our results bring the photonic Carnot engines much closer to the capabilities of current resonator technologies.

17.
Article in English | MEDLINE | ID: mdl-26382378

ABSTRACT

We investigate a quantum heat engine with a working substance of two particles, one with a spin-1/2 and the other with an arbitrary spin (spin s), coupled by Heisenberg exchange interaction, and subject to an external magnetic field. The engine operates in a quantum Otto cycle. Work harvested in the cycle and its efficiency are calculated using quantum thermodynamical definitions. It is found that the engine has higher efficiencies at higher spins and can harvest work at higher exchange interaction strengths. The role of exchange coupling and spin s on the work output and the thermal efficiency is studied in detail. In addition, the engine operation is analyzed from the perspective of local work and efficiency. We develop a general formalism to explore local thermodynamics applicable to any coupled bipartite system. Our general framework allows for examination of local thermodynamics even when global parameters of the system are varied in thermodynamic cycles. The generalized definitions of local and cooperative work are introduced by using mean field Hamiltonians. The general conditions for which the global work is not equal to the sum of the local works are given in terms of the covariance of the subsystems. Our coupled spin quantum Otto engine is used as an example of the general formalism.

18.
Sci Rep ; 5: 12953, 2015 Aug 11.
Article in English | MEDLINE | ID: mdl-26260797

ABSTRACT

Quantum physics revolutionized classical disciplines of mechanics, statistical physics, and electrodynamics. One branch of scientific knowledge however seems untouched: thermodynamics. Major motivation behind thermodynamics is to develop efficient heat engines. Technology has a trend to miniaturize engines, reaching to quantum regimes. Development of quantum heat engines (QHEs) requires emerging field of quantum thermodynamics. Studies of QHEs debate whether quantum coherence can be used as a resource. We explore an alternative where it can function as an effective catalyst. We propose a QHE which consists of a photon gas inside an optical cavity as the working fluid and quantum coherent atomic clusters as the fuel. Utilizing the superradiance, where a cluster can radiate quadratically faster than a single atom, we show that the work output becomes proportional to the square of the number of the atoms. In addition to practical value of cranking up QHE, our result is a fundamental difference of a quantum fuel from its classical counterpart.

19.
Article in English | MEDLINE | ID: mdl-25314390

ABSTRACT

We propose a four-level quantum heat engine in an Otto cycle with a working substance of two spins subject to an external magnetic field and coupled to each other by a one-axis twisting spin squeezing nonlinear interaction. We calculate the positive work and the efficiency of the engine for different parameter regimes. In particular, we investigate the effects of quantum correlations at the end of the two isochoric processes of the Otto cycle, as measured by the entanglement of formation and quantum discord, on the work extraction and efficiency. The regimes where the quantum correlations could enhance the efficiency and work extraction are characterized.


Subject(s)
Hot Temperature , Quantum Theory , Magnetic Fields , Nonlinear Dynamics
20.
Opt Lett ; 32(9): 1038-40, 2007 May 01.
Article in English | MEDLINE | ID: mdl-17410227

ABSTRACT

We investigate waveguiding of ultraslow light pulses in an atomic Bose-Einstein condensate. We show that under the conditions of off-resonant electromagnetically induced transparency, waveguiding with a few ultraslow modes can be realized. The number of modes that can be supported by the condensate can be controlled by means of experimentally accessible parameters. Propagation constants and the mode conditions are determined analytically using a Wentzel-Kramers-Brillouin analysis. Mode profiles are found numerically.

SELECTION OF CITATIONS
SEARCH DETAIL
...