Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Comput Biol Med ; 139: 104934, 2021 12.
Article in English | MEDLINE | ID: mdl-34688171

ABSTRACT

BACKGROUND: Electrocardiographic imaging (ECGI) allows evaluating the complexity of the reentrant activity of atrial fibrillation (AF) patients. In this study, we evaluated the ability of ECGI metrics to predict the success of pulmonary vein isolation (PVI) to treat AF. METHODS: ECGI of 24 AF patients (6 males, 13 paroxysmal, 61.8 ± 14 years) was recorded prior to PVI. Patients were distributed into two groups based on their PVI outcome 6 months after ablation (sinus vs. arrhythmia recurrence). Metrics derived from phase analysis of ECGI signals were computed for two different temporal segments before ablation. Correlation analysis and variability over time were studied between the two recorded segments and were compared between patient groups. RESULTS: Temporal variability of both rotor duration and spatial entropy of the rotor histogram presented statistical differences between groups with different PVI outcome (p < 0.05). The reproducibility of reentrant metrics was higher (R2 > 0.8) in patients with good outcome rather than arrhythmia recurrence patients (R2 < 0.62). Prediction of PVI success based on ECGI temporal variability metrics allows for an increased specificity over the classification into paroxysmal or persistent (0.85 vs. 0.64). CONCLUSIONS: Patients with favorable PVI outcome present ECGI metrics more reproducible over time than patients with AF recurrence. These results suggest that ECGI derived metrics may allow selecting which patients would benefit from ablation therapies.


Subject(s)
Atrial Fibrillation , Catheter Ablation , Pulmonary Veins , Atrial Fibrillation/diagnostic imaging , Atrial Fibrillation/surgery , Benchmarking , Humans , Male , Pulmonary Veins/surgery , Recurrence , Reproducibility of Results , Treatment Outcome
2.
PLoS One ; 14(5): e0215951, 2019.
Article in English | MEDLINE | ID: mdl-31086382

ABSTRACT

BACKGROUND: Alternans have been associated with the development of ventricular fibrillation and its control has been proposed as antiarrhythmic strategy. However, cardiac arrhythmias are a spatiotemporal phenomenon in which multiple factors are involved (e.g. calcium and voltage spatial alternans or heterogeneous conduction velocity) and how an antiarrhythmic drug modifies these factors is poorly understood. OBJECTIVE: The objective of the present study is to evaluate the relation between spatial electrophysiological properties (i.e. spatial discordant alternans and conduction velocity) and the induction of ventricular fibrillation (VF) when a calcium blocker is applied. METHODS: The mechanisms of initiation of VF were studied by simultaneous epicardial voltage and calcium optical mapping in isolated rabbit hearts using an incremental fast pacing protocol. The additional value of analyzing spatial phenomena in the generation of unidirectional blocks and reentries as precursors of VF was depicted. Specifically, the role of action potential duration (APD), calcium transients (CaT), spatial alternans and conduction velocity in the initiation of VF was evaluated during basal conditions and after the administration of verapamil. RESULTS: Our results enhance the relation between (1) calcium spatial alternans and (2) slow conduction velocities with the dynamic creation of unidirectional blocks that allowed the induction of VF. In fact, the administration of verapamil demonstrated that calcium and not voltage spatial alternans were the main responsible for VF induction. CONCLUSIONS: VF induction at high activation rates was linked with the concurrence of a low conduction velocity and high magnitude of calcium alternans, but not necessarily related with increases of APD. Verapamil can postpone the development of cardiac alternans and the apparition of ventricular arrhythmias.


Subject(s)
Calcium/metabolism , Electrophysiological Phenomena , Heart/diagnostic imaging , Heart/physiopathology , Optical Imaging , Ventricular Fibrillation/diagnostic imaging , Ventricular Fibrillation/physiopathology , Animals , Heart Conduction System , Intracellular Space/metabolism , Rabbits , Spatio-Temporal Analysis , Ventricular Fibrillation/metabolism , Ventricular Fibrillation/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...