Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.572
Filter
1.
Theriogenology ; 226: 335-342, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38959844

ABSTRACT

Extracellular signal-regulated protein kinase 5 (Erk5), a member of the mitogen-activated protein kinase (MAPK) family, is ubiquitously expressed in all eukaryotic cells and is implicated in the various mitotic processes such as cell survival, proliferation, migration, and differentiation. However, the potential functional roles of Erk5 in oocyte meiosis have not been fully determined. In this study, we document that ERK5 participates in the meiotic maturation of mouse oocytes by regulating the spindle assembly to ensure the meiotic progression. We unexpectedly found that phosphorylated ERK5 was localized in the spindle pole region at metaphase I and II stages by immunostaining analysis. Inhibition of ERK5 activity using its specific inhibitor XMD8-92 dramatically reduced the incidence of first polar body extrusion. In addition, inhibition of ERK5 evoked the spindle assembly checkpoint to arrest oocytes at metaphase I stage by impairing the spindle assembly, chromosome alignment and kinetochore-microtubule attachment. Mechanically, over-strengthened microtubule stability was shown to disrupt the microtubule dynamics and thus compromise the spindle assembly in ERK5-inhibited oocytes. Conversely, overexpression of ERK5 caused decreased level of acetylated α-tubulin and spindle defects. Collectively, we conclude that ERK5 plays an important role in the oocyte meiotic maturation by regulating microtubule dynamics and spindle assembly.

2.
Front Microbiol ; 15: 1415554, 2024.
Article in English | MEDLINE | ID: mdl-38952446

ABSTRACT

Introduction: The unique dormancy of Mycobacterium tuberculosis plays a significant role in the major clinical treatment challenge of tuberculosis, such as its long treatment cycle, antibiotic resistance, immune escape, and high latent infection rate. Methods: To determine the function of MtrA, the only essential response regulator, one strategy was developed to establish its regulatory network according to high-quality genome-wide binding sites. Results and discussion: The complex modulation mechanisms were implied by the strong bias distribution of MtrA binding sites in the noncoding regions, and 32.7% of the binding sites were located inside the target genes. The functions of 288 potential MtrA target genes predicted according to 294 confirmed binding sites were highly diverse, and DNA replication and damage repair, lipid metabolism, cell wall component biosynthesis, cell wall assembly, and cell division were the predominant pathways. Among the 53 pathways shared between dormancy/resuscitation and persistence, which accounted for 81.5% and 93.0% of the total number of pathways, respectively, MtrA regulatory genes were identified not only in 73.6% of their mutual pathways, but also in 75.4% of the pathways related to dormancy/resuscitation and persistence respectively. These results suggested the pivotal roles of MtrA in regulating dormancy/resuscitation and the apparent relationship between dormancy/resuscitation and persistence. Furthermore, the finding that 32.6% of the MtrA regulons were essential in vivo and/or in vitro for M. tuberculosis provided new insight into its indispensability. The findings mentioned above indicated that MtrA is a novel promising therapeutic target for tuberculosis treatment since the crucial function of MtrA may be a point of weakness for M. tuberculosis.

3.
Nanomicro Lett ; 16(1): 233, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38954272

ABSTRACT

The rapid development of organic electrochemical transistors (OECTs) has ushered in a new era in organic electronics, distinguishing itself through its application in a variety of domains, from high-speed logic circuits to sensitive biosensors, and neuromorphic devices like artificial synapses and organic electrochemical random-access memories. Despite recent strides in enhancing OECT performance, driven by the demand for superior transient response capabilities, a comprehensive understanding of the complex interplay between charge and ion transport, alongside electron-ion interactions, as well as the optimization strategies, remains elusive. This review aims to bridge this gap by providing a systematic overview on the fundamental working principles of OECT transient responses, emphasizing advancements in device physics and optimization approaches. We review the critical aspect of transient ion dynamics in both volatile and non-volatile applications, as well as the impact of materials, morphology, device structure strategies on optimizing transient responses. This paper not only offers a detailed overview of the current state of the art, but also identifies promising avenues for future research, aiming to drive future performance advancements in diversified applications.

4.
Wideochir Inne Tech Maloinwazyjne ; 19(1): 52-59, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38974767

ABSTRACT

Introduction: While cryoablation (CA) and microwave ablation (MWA) have both been implemented as approaches to the treatment of adrenal metastasis (AM), the outcomes associated with these two therapeutic strategies remain unclear. Aim: To compare the safety and efficacy of CA and MWA as treatments for AM in patients with non-small-cell lung cancer (NSCLC). Material and methods: Consecutive patients with AM secondary to NSCLC from January 2015 to December 2020 underwent CA or MWA. Treatment-related outcomes and complications were retrospectively compared between these groups. Results: In total, 68 NSCLC patients with isolated AM were enrolled in this study, of whom 35 and 33 underwent treatment with CA and MWA, respectively. Primary complete ablation rates in the CA and MWA groups were 91.4% (32/35) and 93.9% (31/33) respectively (p = 1.000), while a 100% secondary complete ablation rate was observed for both groups. Hypertensive crisis incidence affected 11.4% (4/35) and 9.1% (3/33) of patients in the CA and MWA groups (p = 1.000), respectively, while 8 (22.9%) and 8 (24.2%) patients in these corresponding groups experienced local progression after ablation that was detected during the follow-up period (p = 0.893). Patients in the CA and MWA groups exhibited a median progression-free survival of 18 and 22 months, respectively (p = 0.411), while the corresponding median overall survival of patients in these groups was 25 and 29 months (p = 0.786). Conclusions: CT-guided CA and MWA appear to exhibit similar safety and efficacy profiles when employed to treat isolated AM in NSCLC patients.

5.
Sci Data ; 11(1): 735, 2024 Jul 06.
Article in English | MEDLINE | ID: mdl-38971852

ABSTRACT

The leaf beetle Ophraella communa LeSage (Coleoptera: Chrysomelidae) is an effective biological control agent of the common ragweed. Here, we assembled a chromosome-level genome of the O. communa by combining Illumina, Nanopore, and Hi-C sequencing technologies. The genome size of the final genome assembly is 733.1 Mb, encompassing 17 chromosomes, with an improved contig N50 of 7.05 Mb compared to the original version. Genome annotation reveals 25,873 protein-coding genes, with functional annotations available for 22,084 genes (85.35%). Non-coding sequence annotation identified 204 rRNAs, 626 tRNAs, and 1791 small RNAs. Repetitive elements occupy 414.41 Mb, constituting 57.76% of the genome. This high-quality genome is fundamental for advancing biological control strategies employing O. communa.


Subject(s)
Coleoptera , Genome, Insect , Coleoptera/genetics , Animals , Molecular Sequence Annotation , Chromosomes, Insect
6.
Cancer Innov ; 3(1): e105, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38948537

ABSTRACT

Background: Numerous studies have revealed a tight connection between tumor development and the coagulation system. However, the effects of coagulation on the prognosis and tumor microenvironment (TME) of clear cell renal cell carcinoma (ccRCC) remain poorly understood. Methods: We employed the consensus clustering method to characterize distinct molecular subtypes associated with coagulation patterns. Subsequently, we examined variations in the overall survival (OS), genomic profiles, and TME characteristics between these subtypes. To develop a prognostic coagulation-related risk score (CRRS) model, we utilized the least absolute shrinkage and selection operator Cox regression and stepwise multivariate Cox regression analyses. We also created a nomogram to aid in the clinical application of the risk score, evaluating the relationships between the CRRS and the immune microenvironment, responsiveness to immunotherapy, and targeted treatment. The clinical significance of PLAUR and its biological function in ccRCC were also further analyzed. Results: There were significant differences in clinical features, prognostic stratification, genomic variation, and TME characteristics between the two coagulation-related subtypes. We established and validated a CRRS using six coagulation-related genes that can be employed as an effective indicator of risk stratification and prognosis estimation for ccRCC patients. Significant variations in survival outcomes were observed between the high- and low-risk groups. The nomogram was proficient in predicting the 1-, 3-, and 5-year OS. Additionally, the CRRS emerged as a novel tool for evaluating the clinical effectiveness of immunotherapy and targeted treatments in ccRCC. Moreover, we confirmed upregulated PLAUR expression in ccRCC samples that was significantly correlated with poor patient prognosis. PLAUR knockdown notably inhibited ccRCC cell proliferation and migration. Conclusion: Our data suggested that CRRS may be employed as a reliable predictive biomarker that can provide therapeutic benefits for immunotherapy and targeted therapy in ccRCC.

7.
Pharmaceuticals (Basel) ; 17(6)2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38931467

ABSTRACT

Trollius chinensis Bunge (TCB) is a perennial plant of the Ranunculaceae family with medicinal and edible values. It is widely distributed and commonly used in various regions, including Asia, Europe, and North America. The main chemical components of TCB include alkaloids, flavonoids, phenolic acids, and volatile oil compounds. TCB is renowned for its anti-inflammatory, heat-clearing, detoxifying, and eyesight-improving properties. Its dried flowers are commonly used as a traditional Chinese medicine indicated for the treatment of upper respiratory tract infections, chronic tonsillitis, pharyngitis, influenza, and bronchitis. Modern pharmacology has demonstrated the anti-cancer, anti-inflammatory, antihypertensive, and antioxidant effects of TCB. This study presents a comprehensive overview of various aspects of TCB, including herbal textual research, botany, phytochemistry, pharmacology, traditional uses, clinical application, and quality control, aiming to provide new ideas on the scientific application of TCB as well as the integration of modern research with traditional medicinal uses.

8.
Front Microbiol ; 15: 1381756, 2024.
Article in English | MEDLINE | ID: mdl-38939183

ABSTRACT

This study aimed to explore whether Lactococcus G423 could improve growth performance and lipid metabolism of broilers by the modulation of gut microbiota and metabolites. A total of 640 1-day-old AA broilers were randomly divided into 4 groups [Control (CON), Lac_L, Lac_H, and ABX]. Average daily gain (ADG), average daily feed intake (ADFI), feed conversion ratio (FCR), breast muscle, thigh muscle, and abdominal fat pad were removed and weighed at 42 days of age. Serum was obtained by centrifuging blood sample from jugular vein (10 mL) for determining high-density lipoprotein (HDL), total cholesterol (TC), low-density lipoprotein (LDL), and triglyceride (TG) using ELISA. The ileal contents were harvested and immediately frozen in liquid nitrogen for 16S rRNA and LC-MS analyses. Then, the results of 16S rRNA analysis were confirmed by quantitative polymerase chain reaction (qPCR). Compared with the CON group, FCR significantly decreased in the Lac_H group (p < 0.05) in 1-21 days; ADG significantly increased and FCR significantly decreased in the Lac_H group (p < 0.05) in 22-42 days. 42 days weight body and ADG significantly increased in the Lac_H group (p < 0.05) in 42 days. Abdominal fat percentage was significantly decreased by Lactococcus G423 (p < 0.05), the high dose of Lactococcus G423 significantly decreased the serum of TG, TC, and LDL level (p < 0.05), and the low dose of Lactococcus G423 significantly decreased the serum of TG and TC level (p < 0.05). A significant difference in microbial diversity was found among the four groups. Compared with the CON group, the abundance rates of Firmicutes and Lactobacillus in the Lac_H group were significantly increased (p < 0.05). The global and overview maps and membrane transport in the Lac_L, Lac_H, and ABX groups significantly changed versus those in the CON group (p < 0.05). The results of LC-MS demonstrated that Lactococcus could significantly improve the levels of some metabolites (6-hydroxy-5-methoxyindole glucuronide, 9,10-DiHOME, N-Acetyl-l-phenylalanine, and kynurenine), and these metabolites were involved in four metabolic pathways. Among them, the pathways of linoleic acid metabolism, phenylalanine metabolism, and pentose and glucuronate interconversions significantly changed (p < 0.05). Lactococcus G423 could ameliorate growth performance and lipid metabolism of broilers by the modulation of gut microbiota and metabolites.

9.
Front Cell Infect Microbiol ; 14: 1393242, 2024.
Article in English | MEDLINE | ID: mdl-38912204

ABSTRACT

Background: Invasive mold diseases of the central nervous (CNS IMD) system are exceedingly rare disorders, characterized by nonspecific clinical symptoms. This results in significant diagnostic challenges, often leading to delayed diagnosis and the risk of misdiagnosis for patients. Metagenomic Next-Generation Sequencing (mNGS) holds significant importance for the diagnosis of infectious diseases, especially in the rapid and accurate identification of rare and difficult-to-culture pathogens. Therefore, this study aims to explore the clinical characteristics of invasive mold disease of CNS IMD in children and assess the effectiveness of mNGS technology in diagnosing CNS IMD. Methods: Three pediatric patients diagnosed with Invasive mold disease brain abscess and treated in the Pediatric Intensive Care Unit (PICU) of the First Affiliated Hospital of Zhengzhou University from January 2020 to December 2023 were selected for this study. Results: Case 1, a 6-year-old girl, was admitted to the hospital with "acute liver failure." During her hospital stay, she developed fever, irritability, and seizures. CSF mNGS testing resulted in a negative outcome. Multiple brain abscesses were drained, and Aspergillus fumigatus was detected in pus culture and mNGS. The condition gradually improved after treatment with voriconazole combined with caspofungin. Case 2, a 3-year-old girl, was admitted with "acute B-lymphoblastic leukemia." During induction chemotherapy, she developed fever and seizures. Aspergillus fumigatus was detected in the intracranial abscess fluid by mNGS, and the condition gradually improved after treatment with voriconazole combined with caspofungin, followed by "right-sided brain abscess drainage surgery." Case 3, a 7-year-old girl, showed lethargy, fever, and right-sided limb weakness during the pending chemotherapy period for acute B-lymphoblastic leukemia. Rhizomucor miehei and Rhizomucor pusillus was detected in the cerebrospinal fluid by mNGS. The condition gradually improved after treatment with amphotericin B combined with posaconazole. After a six-month follow-up post-discharge, the three patients improved without residual neurological sequelae, and the primary diseases were in complete remission. Conclusion: The clinical manifestations of CNS IMD lack specificity. Early mNGS can assist in identifying the pathogen, providing a basis for definitive diagnosis. Combined surgical treatment when necessary can help improve prognosis.


Subject(s)
Antifungal Agents , Brain Abscess , High-Throughput Nucleotide Sequencing , Metagenomics , Humans , Female , Child , Metagenomics/methods , Brain Abscess/microbiology , Brain Abscess/diagnosis , Brain Abscess/drug therapy , Antifungal Agents/therapeutic use , Antifungal Agents/pharmacology , Invasive Fungal Infections/diagnosis , Invasive Fungal Infections/microbiology , Invasive Fungal Infections/drug therapy , Male , Central Nervous System Fungal Infections/diagnosis , Central Nervous System Fungal Infections/microbiology , Central Nervous System Fungal Infections/drug therapy , Child, Preschool , Aspergillus fumigatus/genetics , Aspergillus fumigatus/isolation & purification , Caspofungin/therapeutic use
10.
Pediatr Radiol ; 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38910223

ABSTRACT

BACKGROUND: Magnetic resonance diffusion tensor imaging (DTI) has recently been used to evaluate the developing cartilage of children, but the influencing factors have not been well studied. OBJECTIVE: The objective of this study was to investigate the influence of the diffusion gradient strength (b value), diffusion gradient direction, age and sex on knee cartilage DTI in healthy children aged 6-12 years. MATERIALS AND METHODS: A total of 30 healthy child volunteers, with an average age of 8.9 ± 1.6 (mean ± standard deviation) years, were enrolled in this study. They were categorized into three groups according to their age range: 6-8 years, 8-10 years and 10-12 years, ensuring equal sex distribution in each group (5 boys and 5 girls). These volunteers underwent routine left knee joint magnetic resonance imaging (MRI) and serial DTI scans. DTI parameters were altered as follows: when b value = 600 s/mm2, diffusion gradient direction was set to 6, 15, 25, 35 and 45; and when diffusion gradient direction = 25, b value was set to 300, 600, 900 and 1200 s/mm2. The values of fractional anisotropy (FA) and apparent diffusion coefficient (ADC) were separately acquired using image post-processing techniques. The correlation between various b values, diffusion gradient directions, age and sex on the one hand and FA and ADC values on the other, was investigated. RESULTS: (1) When diffusion gradient direction was fixed and the b value was varied, both FA and ADC exhibited a decreasing trend as the b value increased (P < 0.001). (2) When the b value was fixed and diffusion gradient direction was varied, the FA of knee cartilage showed a decreasing trend with increasing diffusion gradient direction (P < 0.001). (3) The FA value increased with age (P < 0.05). CONCLUSION: The b value, diffusion gradient direction value and age exert a significant impact on both FA and ADC values in MR DTI of knee cartilage in children aged 6-12 years. In order to obtain a stable DTI, it is recommended to select a b value ≥ 600 s/mm2 and a diffusion gradient direction ≥ 25 during scanning.

11.
Zhongguo Gu Shang ; 37(6): 5605-4, 2024 Jun 25.
Article in Chinese | MEDLINE | ID: mdl-38910377

ABSTRACT

OBJECTIVE: To explore preemptive analgesic effect of preoperative intramural tramadol injection in percutaneous kyphoplasty (PKP) of vertebrae following local anesthesia. METHODS: From August 2019 to June 2021, 118 patients with thoraco lumbar osteoporotic fractures were treated and divided into observation group and control group, with 59 patients in each gruop. In observation group, there were 26 males and 33 females, aged from 57 to 80 years old with an average of (67.69±4.75)years old;14 patients on T11, 12 patients on T12, 18 patients on L1, 15 patients on L2;tramadol with 100 mg was injected intramuscularly half an hour before surgery in observation group. In control group, there were 24 males and 35 females, aged from 55 to 77 years old with an average of (68.00±4.43) years old;19 patients on T11, 11 patients on T12, 17patients on L1, 12 patients on L2;the same amount of normal saline was injected intramuscularly in control group. Observation indicators included operation time, intraoperative bleeding, visual analogue scale (VAS) evaluation and recording of preoperative (T0), intraoperative puncture(T1), and working cannula placement (T2) between two groups of patients, at the time of balloon dilation (T3), when the bone cement was injected into the vertebral body (T4), 2 hours after the operation (T5), and the pain degree at the time of discharge(T6);adverse reactions such as dizziness, nausea and vomiting were observed and recorded;the record the patient's acceptance of repeat PKP surgery. RESULTS: All patients were successfully completed PKP via bilateral pedicle approach, and no intravenous sedative and analgesic drugs were used during the operation. There was no significant difference in preoperative general data and VAS(T0) between two groups (P>0.05). There was no significant difference in operation time and intraoperative blood loss between the two groups (P>0.05). VAS of T1, T2, T3, T4 and T5 in observation group were all lower than those in control group(P<0.05), and there was no significant difference in T6 VAS (P>0.05). T6 VAS between two groups were significantly lower than those of T0, and the difference was statistically significant (P<0.05). There was no significant difference in incidence of total adverse reactions between two groups (P>0.05). There was a statistically significant difference in the acceptance of repeat PKP surgery (P<0.05). CONCLUSION: Half an hour before operation, intramuscular injection of tramadol has a clear preemptive analgesic effect for PKP of single-segment thoracolumbar osteoporotic fracture vertebral body under local anesthesia, which could increase the comfort of patients during operation and 2 hours after operation, and improve patients satisfaction with surgery.


Subject(s)
Anesthesia, Local , Kyphoplasty , Lumbar Vertebrae , Osteoporotic Fractures , Thoracic Vertebrae , Tramadol , Humans , Female , Male , Aged , Tramadol/administration & dosage , Middle Aged , Kyphoplasty/methods , Thoracic Vertebrae/surgery , Thoracic Vertebrae/injuries , Osteoporotic Fractures/surgery , Lumbar Vertebrae/surgery , Anesthesia, Local/methods , Aged, 80 and over , Analgesia/methods , Pain, Postoperative/drug therapy , Pain, Postoperative/prevention & control , Spinal Fractures/surgery , Analgesics, Opioid/administration & dosage
12.
Nat Hum Behav ; 8(6): 1035-1043, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38907029

ABSTRACT

Board, card or video games have been played by virtually every individual in the world. Games are popular because they are intuitive and fun. These distinctive qualities of games also make them ideal for studying the mind. By being intuitive, games provide a unique vantage point for understanding the inductive biases that support behaviour in more complex, ecological settings than traditional laboratory experiments. By being fun, games allow researchers to study new questions in cognition such as the meaning of 'play' and intrinsic motivation, while also supporting more extensive and diverse data collection by attracting many more participants. We describe the advantages and drawbacks of using games relative to standard laboratory-based experiments and lay out a set of recommendations on how to gain the most from using games to study cognition. We hope this Perspective will lead to a wider use of games as experimental paradigms, elevating the ecological validity, scale and robustness of research on the mind.


Subject(s)
Cognition , Video Games , Humans , Video Games/psychology , Games, Experimental , Motivation
13.
J Cancer ; 15(12): 3857-3872, 2024.
Article in English | MEDLINE | ID: mdl-38911364

ABSTRACT

Cancer is a destructive disease and is currently the leading cause of major threats to human health. PLBD1 is a transcription factor that regulates phospholipid metabolism, but its role in tumors is unknown. We assessed pan-cancer expression, methylation, and mutation data of PLBD1 by multiple databases to investigate its clinical prognostic value. In addition, we examined the pan-cancer immunological signature of PLBD1, particularly in gliomas. Furthermore, we assessed the impact of PLBD1 knockdown on the proliferation and invasive capacity of glioma cells by in vitro experiments. Our results suggest that PLBD1 is highly expressed in multiple types of cancers, and it can serve as an independent prognostic factor for gliomas. In addition, we found that the epigenetic alterations of PLBD1 were highly heterogeneous in a variety of cancers, including gliomas, and that its high methylation was associated with poor prognosis in a broad range of cancers. Immunological profiling demonstrated that PLBD1 was significantly associated with immune cell infiltration and multiple immune checkpoints in gliomas and is a potential biomarker for gliomas. Furthermore, cellular experiments showed that knockdown of PLBD1 significantly inhibited the proliferation and invasive ability of glioma cells. In conclusion, PLBD1 is a potential tumor prognostic biomarker and immunotherapeutic target that plays a crucial role in glioma cell proliferation, invasion and immunotherapy.

14.
Nat Hum Behav ; 8(6): 1016-1034, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38849647

ABSTRACT

The ability to sustain internal representations of the sensory environment beyond immediate perception is a fundamental requirement of cognitive processing. In recent years, debates regarding the capacity and fidelity of the working memory (WM) system have advanced our understanding of the nature of these representations. In particular, there is growing recognition that WM representations are not merely imperfect copies of a perceived object or event. New experimental tools have revealed that observers possess richer information about the uncertainty in their memories and take advantage of environmental regularities to use limited memory resources optimally. Meanwhile, computational models of visuospatial WM formulated at different levels of implementation have converged on common principles relating capacity to variability and uncertainty. Here we review recent research on human WM from a computational perspective, including the neural mechanisms that support it.


Subject(s)
Memory, Short-Term , Visual Perception , Humans , Memory, Short-Term/physiology , Visual Perception/physiology , Models, Neurological
15.
Sci Rep ; 14(1): 14642, 2024 06 25.
Article in English | MEDLINE | ID: mdl-38918442

ABSTRACT

People procrastinate, but why? One long-standing hypothesis is that temporal discounting drives procrastination: in a task with a distant future reward, the discounted future reward fails to provide sufficient motivation to initiate work early. However, empirical evidence for this hypothesis has been lacking. Here, we used a long-term real-world task and a novel measure of procrastination to examine the association between temporal discounting and real-world procrastination. To measure procrastination, we critically measured the entire time course of the work progress instead of a single endpoint, such as task completion day. This approach allowed us to compute a fine-grained metric of procrastination. We found a positive correlation between individuals' degree of future reward discounting and their level of procrastination, suggesting that temporal discounting is a cognitive mechanism underlying procrastination. We found no evidence of a correlation when we, instead, measured procrastination by task completion day or by survey. This association between temporal discounting and procrastination offers empirical support for targeted interventions that could mitigate procrastination, such as modifying incentive systems to reduce the delay to a reward and lowering discount rates.


Subject(s)
Delay Discounting , Motivation , Procrastination , Reward , Humans , Male , Female , Adult , Young Adult
16.
Gels ; 10(6)2024 May 28.
Article in English | MEDLINE | ID: mdl-38920919

ABSTRACT

Gel treatment is an economical and efficient method of controlling excessive water production. The gelation of in situ gels is prone to being affected by the dilution of formation water, chromatographic during the transportation process, and thus controlling the gelation time and penetration depth is a challenging task. Therefore, a novel gel system termed preformed particle gels (PPGs) has been developed to overcome the drawbacks of in situ gels. PPGs are superabsorbent polymer gels which can swell but not dissolve in brines. Typically, PPGs are a granular gels formed based on the crosslinking of polyacrylamide, characterized by controllable particle size and strength. This work summarizes the application scenarios of PPGs and elucidates their plugging mechanisms. Additionally, several newly developed PPG systems such as high-temperature-resistant PPGs, re-crosslinkable PPGs, and delayed-swelling PPGs are also covered. This research indicates that PPGs can selectively block the formation of fractures or high-permeability channels. The performance of the novel modified PPGs was superior to in situ gels in harsh environments. Lastly, we outlined recommended improvements for the novel PPGs and suggested future research directions.

17.
ACS Appl Mater Interfaces ; 16(26): 33885-33896, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38888910

ABSTRACT

Donor (D)-acceptor (A) copolymer-based organic mixed ionic-electronic conductors (OMIECs) exhibit intrinsic environmental stability for they have tailored energy levels. However, their figure-of-merit (µC*) is still falling behind the D-D polymers because of morphology deterioration during the electrochemical doping process. Herein, we developed two D-A copolymers with precisely regulated backbone curvature, namely PTBT-P and PTTBT-P. Compared to the curved PTBT-P and previously reported copolymers, PTTBT-P better keeps its backbone linear, leading to a long-range ordered doping morphology, which is revealed by the in operando X-ray technique. This optimized doping morphology enables a significantly improved operando charge mobility (µ) of 2.44 cm2 V-1 s-1 and a µC* value of 342 F cm-1 V-1 s-1, one of the highest values in D-A copolymer based on OECTs. Besides, we fabricated PTTBT-P-based electrochemical random-access memories and achieved ideal and robust conductance modulation. This study highlights the critical role of backbone curvature control in the optimization of doping morphology for efficient and robust organic electrochemical devices.

18.
Environ Sci Technol ; 58(26): 11568-11577, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38889013

ABSTRACT

Dinitrogen pentoxide (N2O5) plays an essential role in tropospheric chemistry, serving as a nocturnal reservoir of reactive nitrogen and significantly promoting nitrate formations. However, identifying key environmental drivers of N2O5 formation remains challenging using traditional statistical methods, impeding effective emission control measures to mitigate NOx-induced air pollution. Here, we adopted machine learning assisted by steady-state analysis to elucidate the driving factors of N2O5 before and during the 2022 Winter Olympics (WO) in Beijing. Higher N2O5 concentrations were observed during the WO period compared to the Pre-Winter-Olympics (Pre-WO) period. The machine learning model accurately reproduced ambient N2O5 concentrations and showed that ozone (O3), nitrogen dioxide (NO2), and relative humidity (RH) were the most important driving factors of N2O5. Compared to the Pre-WO period, the variation in trace gases (i.e., NO2 and O3) along with the reduced N2O5 uptake coefficient was the main reason for higher N2O5 levels during the WO period. By predicting N2O5 under various control scenarios of NOx and calculating the nitrate formation potential from N2O5 uptake, we found that the progressive reduction of nitrogen oxides initially increases the nitrate formation potential before further decreasing it. The threshold of NOx was approximately 13 ppbv, below which NOx reduction effectively reduced the level of night-time nitrate formations. These results demonstrate the capacity of machine learning to provide insights into understanding atmospheric nitrogen chemistry and highlight the necessity of more stringent emission control of NOx to mitigate haze pollution.


Subject(s)
Air Pollutants , Atmosphere , Machine Learning , Air Pollutants/analysis , Atmosphere/chemistry , Nitrogen Oxides/analysis , Air Pollution , Ozone/analysis , Environmental Monitoring/methods , Nitrogen Dioxide/analysis
20.
Am J Trop Med Hyg ; 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38917823

ABSTRACT

Although studies have reported the modification effect of air pollutants on heat-related health risk, little is known on the modification effect among various particulate matter with different particle size on mortality. We aimed to investigate whether the associations of hot temperatures with daily mortality were modified by different air pollutant levels in Shandong Province, China. Daily data of air pollutants, meteorological factors, and mortality of 1,822 subdistricts in Shandong province from 2013 to 2018 were collected. We used a time-stratified case-crossover model with an interaction term between the cross-basis term for ambient temperature and the linear function of particulate matter ≤1 µm (PM1), PM2.5, nitrogen dioxide (NO2), and ozone to obtain heat-mortality associations during the hot season. Results showed that the cumulative odds ratio of extreme heat on mortality over 0 to 10 days was 3.66 (95% CI: 3.10-4.31). The mortality risk during hot seasons was stronger at high air pollutant levels. The modification effect of particulate matters on heat-related mortality decreased by its aerodynamic diameter. Females and older adults over 75 years were more vulnerable to the modification effect of air pollutants, and significant differences were detected in the association between temperatures and mortality stratified by PM1 and PM2.5. Higher heat-related mortality risks were observed at high NO2 levels, especially for cardiorespiratory disease. The findings suggest that more consideration should be given to the combined effect of very fine particles and NO2 with ambient heat when developing healthcare strategies, and women and older adults should be given priority in health-related settings.

SELECTION OF CITATIONS
SEARCH DETAIL
...