Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
1.
Exp Mol Pathol ; 134: 104870, 2023 12.
Article in English | MEDLINE | ID: mdl-37690528

ABSTRACT

Bisphenol A (BPA) is an endocrine-disrupting chemical with a potential role in endocrine cancers. However, the effects of BPA on the salivary glands have been barely explored. We investigated the impact of in vivo sub-chronic exposure to BPA and its in vitro effects on human salivary gland mucoepidermoid carcinoma cell lines. Male and female mice were exposed to BPA (30 mg/kg/day). Sublingual and submandibular salivary glands from an estrogen-deficiency model were also analyzed. BPA concentration in salivary glands was evaluated by gas chromatography coupled to ion trap mass spectrometry. Immunohistochemical analysis using anti-p63 and anti-α-SMA antibodies was performed on mouse salivary gland tissues. Gene expression of estrogen receptors alpha and beta, P63 and α-SMA was quantified in mouse salivary gland and/or mucoepidermoid (UM-HMC-1 and UM-HMC-3A) cell lines. Cell viability, p63 and Ki-67 immunostaining were evaluated in vitro. BPA disrupted the tissue architecture of the submandibular and sublingual glands, particularly in female mice, and increased the expression of estrogen receptors and p63, effects that were accompanied by significant BPA accumulation in these tissues. Conversely, ovariectomy slightly impacted BPA-induced morphological changes. In vitro, BPA did not affect the proliferation of neoplastic cells, but augmented the expression of p63 and estrogen receptors. The present data highlight a potential harmful effect of BPA on salivary gland tissues, particularly in female mice, and salivary gland tumor cells. Our findings suggest that estrogen-dependent pathways may orchestrate the effects of BPA in salivary glands.


Subject(s)
Salivary Gland Neoplasms , Salivary Glands , Humans , Animals , Mice , Male , Female , Estrogens , Receptors, Estrogen/genetics , Receptors, Estrogen/metabolism , Cell Line, Tumor , Salivary Gland Neoplasms/chemically induced
2.
J Sep Sci ; 46(19): e2300187, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37525343

ABSTRACT

Among the main approaches for predicting the spatial positions of eluates in comprehensive two-dimensional gas chromatography, the still under-explored computational models based on deep learning algorithms emerge as robust and reliable options due to their high adaptability to the structure and complexity of the data. In this work, an open-source program based on deep neural networks was developed to optimize chromatographic methods and simulate operating conditions outside the laboratory. The deep neural networks models were fit to convenient experimental predictors, resulting in scaled losses (mean squared error) equivalent to 0.006 (relative average deviation = 8.56%, R2  = 0.9202) and 0.014 (relative average deviation = 1.67%, R2  = 0.8009) in the prediction of the first- and second-dimension retention times, respectively. Good compliance was observed for the main chemical classes, such as environmental contaminants: volatile, semivolatile organic compounds, and pesticides; biochemistry molecules: amino acids and lipids; pharmaceutical industry and personal care products and residues: drugs and metabolites; among others. On the other hand, there is a need for continuous database updates to predict retention times of less common compounds accurately. Thus, forming a collaborative database is proposed, gathering voluntary findings from other users.

3.
J Appl Oral Sci ; 30: e20220227, 2023.
Article in English | MEDLINE | ID: mdl-36753069

ABSTRACT

BACKGROUND: To evaluate the release of bisphenol-A glycidyl methacrylate (BisGMA), triethylene glycol dimethacrylate (TEGDMA), bisphenol A (BPA), and phthalates of the composite resin used in the bonding of spurs applied in the treatment of children with anterior open bite and its effects on human keratinocytes. METHODOLOGY: Saliva samples of 22 children were collected before spur attachment (baseline) and 30 minutes (min) and 24 hours (h) after spur bonding. Analysis was performed using high-performance liquid chromatography (HPLC) coupled to tandem mass spectrometry (HPLC-MS/MS) and gas chromatography coupled to mass spectrometry (GC-MS). Standardized resin increments were added to three different dilutions of the cell culture medium. Keratinocytes (HaCaT) were cultivated in the conditioned media and evaluated for cell viability (MTT) and cell scratch assay. RESULTS: The levels of BisGMA (1.74±0.27 µg/mL), TEGDMA (2.29±0.36 µg/mL), and BPA (3.264±0.88 µg/L) in the saliva after 30 min, in comparison to baseline (0±0 µg/mL, 0±0 µg/mL, and 1.15±0.21 µg/L, respectively), presented higher numbers. After 24 h, the levels of the monomers were similar to the baseline. Phthalates showed no significant difference among groups. HaCat cells showed increased viability and reduced cell migration over time after exposure to methacrylate-based resin composites. CONCLUSION: Resin composites, used to attach spurs in children with anterior open bite during orthodontic treatment, release monomers after polymerization and can influence the behavior of human keratinocytes, even at very low concentrations. Orthodontists should be aware of the risks of the resinous compounds release and preventive procedures should be held to reduce patient exposure.


Subject(s)
Open Bite , Saliva , Child , Humans , Saliva/chemistry , Tandem Mass Spectrometry , Polymethacrylic Acids/chemistry , Composite Resins/chemistry , Bisphenol A-Glycidyl Methacrylate/chemistry , Methacrylates/chemistry , Polyethylene Glycols/chemistry , Materials Testing
4.
Braz J Microbiol ; 54(1): 349-360, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36598751

ABSTRACT

Several endophytic fungi have been reported to have produced bioactive metabolites. Some of them, including the Induratia species, have the capacity to emit volatile compounds with antimicrobial properties with broad spectrum against human and plant pathogens. The present study aimed to prospect the Induratia species producing volatile organic compounds (VOCs), in carqueja plants used in alternative medicine and coffee plants in Brazil. A total of 11 fungal isolates producing volatile metabolites were obtained by a parallel growth technique, using I. alba 620 as a reference strain. Phylogenetic relationships revealed the presence of at least three distinct species, I. coffeana, I. yucatanensis, and Induratia sp. SPME/GC/MS analyses of the VOCs in the headspace above the mycelium from Induratia species cultured for 10 days on PDA revealed the volatile profile emitted by I. coffeana CCF 572, I. coffeana COAD 2055, I. yucatanensis COAD 2062, and Induratia sp. COAD 2059. Volatile organic compounds produced by I. coffeana isolates presented antimicrobial activity against Aspergillus ochraceus, A. sclerotiorum, A. elegans, A. foetidus, A. flavus, A. tamari, A. tubingensis, A. sydowii, A. niger, A. caespitosus, A. versicolor, and A. expansum, sometimes by decreasing the growth rate or, mainly, by fully inhibiting colony growth. Fifty-eight percent of the target species died after 6 days of exposure to VOCs emitted by I. coffeana CCF 572. In addition, VOCs emitted by the same fungus inhibited the growth in A. ochraceus inoculated into coffee beans, which indicates that plants which have I. coffeana as an endophyte may be protected from attacks by this plant pathogen.


Subject(s)
Anti-Infective Agents , Coffea , Volatile Organic Compounds , Xylariales , Humans , Volatile Organic Compounds/metabolism , Brazil , Phylogeny , Anti-Infective Agents/metabolism , Xylariales/metabolism , Fungi
5.
Chemosphere ; 311(Pt 1): 136872, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36252898

ABSTRACT

A risk assessment and a source apportionment of the particulate- and gas-phase PAHs were conducted in a high vehicular traffic and industrialized region in southeastern Brazil. Higher concentrations of PAHs were found during summer, being likely driven by the contributions of PAHs in the vapor phase caused by fire outbreaks during this period. Isomer ratio diagnostic and Principal Component Analysis (PCA) identified four potential sources in the region, in which the Positive Matrix Factorization (PMF) model confirmed and apportioned as gasoline-related (31.8%), diesel-related (25.1%), biomass burning (23.4%), and mixed sources (19.6%). The overall cancer risk had a tolerable value, with ∑CR = 4.6 × 10-5, being ingestion the major via of exposure (64% of the ∑CR), followed by dermal contact (33% of the ∑CR) and inhalation (3%). Mixed sources contributed up to 45% of the overall cancer risk (∑CR), followed by gasoline-related (up to 35%), diesel-related (up to 15%), and biomass burning (up to 10%). The risk assessment for individual PAH species allowed identifying higher CR associated with BaP, DBA, BbF, BaA, and BkF, species associated with gasoline-related and industrial sources. Higher risks were associated with PM2.5-bound PAHs exposure, mainly via ingestion and dermal contact, highlighting the need for measures of mitigation and control of PM2.5 in the region.


Subject(s)
Air Pollutants , Neoplasms , Polycyclic Aromatic Hydrocarbons , Humans , Polycyclic Aromatic Hydrocarbons/analysis , Gasoline/analysis , Environmental Monitoring , Brazil/epidemiology , Coal/analysis , Dust/analysis , Risk Assessment , Air Pollutants/analysis , Particulate Matter/analysis , China
6.
J. appl. oral sci ; 30: e20220227, 2022. tab, graf
Article in English | LILACS-Express | LILACS | ID: biblio-1421892

ABSTRACT

Abstract To evaluate the release of bisphenol-A glycidyl methacrylate (BisGMA), triethylene glycol dimethacrylate (TEGDMA), bisphenol A (BPA), and phthalates of the composite resin used in the bonding of spurs applied in the treatment of children with anterior open bite and its effects on human keratinocytes. Methodology Saliva samples of 22 children were collected before spur attachment (baseline) and 30 minutes (min) and 24 hours (h) after spur bonding. Analysis was performed using high-performance liquid chromatography (HPLC) coupled to tandem mass spectrometry (HPLC-MS/MS) and gas chromatography coupled to mass spectrometry (GC-MS). Standardized resin increments were added to three different dilutions of the cell culture medium. Keratinocytes (HaCaT) were cultivated in the conditioned media and evaluated for cell viability (MTT) and cell scratch assay. Results The levels of BisGMA (1.74±0.27 μg/mL), TEGDMA (2.29±0.36 μg/mL), and BPA (3.264±0.88 μg/L) in the saliva after 30 min, in comparison to baseline (0±0 μg/mL, 0±0 μg/mL, and 1.15±0.21 μg/L, respectively), presented higher numbers. After 24 h, the levels of the monomers were similar to the baseline. Phthalates showed no significant difference among groups. HaCat cells showed increased viability and reduced cell migration over time after exposure to methacrylate-based resin composites. Conclusion Resin composites, used to attach spurs in children with anterior open bite during orthodontic treatment, release monomers after polymerization and can influence the behavior of human keratinocytes, even at very low concentrations. Orthodontists should be aware of the risks of the resinous compounds release and preventive procedures should be held to reduce patient exposure.

7.
Environ Pollut ; 286: 117296, 2021 Oct 01.
Article in English | MEDLINE | ID: mdl-33971473

ABSTRACT

Bisphenol A (BPA) is an endocrine disrupting chemical able to promote hormone-responsive tumors. The major route of BPA contamination being oral, the aim of the present study was to investigate BPA effects on oral cells. Here, we evaluated the impact of sub-chronic in vivo exposure to BPA and its in vitro effects on neoplastic and non-neoplastic oral cells. We evaluated the oral mucosa of mice chronically exposed to BPA (200 mg/L). The response of keratinocytes (NOK-SI) and Head and Neck (HN) Squamous Cell Carcinoma (SCC), HN12 and HN13 cell lines to BPA was examined. In vivo, BPA accumulated in oral tissues and caused an increase in epithelial proliferative activity. BPA disrupted the function of keratinocytes by altering pro-survival and proliferative pathways and the secretion of cytokines and growth factors. In tumor cells, BPA induced proliferative, invasive, pro-angiogenic, and epigenetic paths. Our data highlight the harmful effects of BPA on oral mucosa and, tumorigenic and non-tumorigenic cells. Additionally, BPA may be a modifier of oral cancer cell behavior by prompting a functional shift to a more aggressive phenotype.


Subject(s)
Endocrine Disruptors , Mouth Neoplasms , Animals , Benzhydryl Compounds/toxicity , Endocrine Disruptors/toxicity , Mice , Mouth Mucosa , Mouth Neoplasms/chemically induced , Phenols/toxicity
8.
Anal Bioanal Chem ; 412(28): 7799-7810, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32862322

ABSTRACT

Bisphenol A and phthalates are endocrine disruptors widely used as chemical additives mainly in plastic products, including materials for dentistry procedures. Besides, many plasticizers have been associated with important diseases requiring performed methods for their quantification. In the present study, an alternative method for the determination of bisphenol A (BPA) and phthalate metabolites in saliva was developed and validated using hollow fiber liquid phase microextraction (HF-LPME) for sample preparation and gas chromatography coupled to ion trap mass spectrometry (GC/MS) for analysis. A mixture of octanol and ethyl octanoate (1:1 v/v) was used as an acceptor phase in hollow fiber to extract the analytes from saliva samples. A Doehlert design was performed to optimize the variable sample agitation and extraction time. The HF-LPME-GC/MS method developed for saliva analysis showed good selectivity, linearity (R2 > 0.900), and precision (CV = 0.86-18.68%). Limits of detection and quantification ranged from 0.03 to 0.53 µg L-1 and 0.09 to 1.78 µg L-1, respectively. A high concentration of BPA in the oral cavity and oropharyngeal space is a warning of the possible association with the main cancer of the mouth. The method developed and validated was applied to patients with oral squamous cell carcinoma (study group, n = 16) and patients who did not present any oral lesion (control group, n = 16). A principal component analysis was performed and showed a tendency for the association between oral squamous cell carcinoma (OSCC) and plasticizers. Graphical abstract.


Subject(s)
Biological Monitoring/methods , Dental Materials , Endocrine Disruptors/analysis , Gas Chromatography-Mass Spectrometry/methods , Liquid Phase Microextraction/methods , Plasticizers/analysis , Saliva/chemistry , Humans , Limit of Detection , Reproducibility of Results
9.
Chemosphere ; 250: 126223, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32113098

ABSTRACT

Air quality in large cities has worsened in recent years as a consequence people's health is directly affected. Among the toxic compounds released to environmental air are polycyclic aromatic hydrocarbons (PAHs), nitrated PAHs (nitro-PAHs), and oxygenated PAHs (oxy-PAHs). Performant methods to analyze these compounds is necessary to enable adequate monitoring of air quality. Thus, this manuscript presents the development of a highly sensitive method to analyze PAHs, nitro-PAHs, and oxy-PAHs collected from ambient air (PM2.5) and the gas phase for a period of one year in the urban area of Belo Horizonte, Brazil. PAHs and their derivatives were extracted by cold fiber solid phase microextraction (CF-SPME) and analyzed by gas chromatography coupled to mass spectrometry (GC/MS). The proposed method allows simultaneous analysis of 16 PAHs, nitro-PAHs and oxy-PAHs, presenting very good limits of detection and quantification, as well as appropriate precision and recovery. The results obtained for the period of one year allowed different studies. The compounds collected simultaneously from gas and particulate phase showed that total concentration of 16 PAHs were higher in the gas phase than in the particulate. On the other hand, nitro-PAHs and oxy-PAHs presented similar concentration in gas and particulate phases. The potential carcinogenicity of PAHs relative to benzo[a]pyrene showed benzo[a]pyrene equivalents of 0.49 ng m-3. The estimated risk of lifetime lung cancer was 5 × 10-5. Principal component analysis and diagnostic ratio was applied for source distribution indicating that burning of gasoline, diesel and biomass accounted for the PAHs profile in ambient air samples.


Subject(s)
Air Pollutants/analysis , Air Pollution/statistics & numerical data , Environmental Monitoring , Polycyclic Aromatic Hydrocarbons/analysis , Air Pollution/analysis , Benzo(a)pyrene/analysis , Brazil , Cell Respiration , Cities , Dust/analysis , Gas Chromatography-Mass Spectrometry/methods , Gasoline/analysis , Humans , Nitrates/chemistry , Nitrogen Oxides/analysis , Oxygen/chemistry , Particulate Matter/analysis , Solid Phase Microextraction
10.
J Chromatogr A ; 1584: 64-71, 2019 Jan 11.
Article in English | MEDLINE | ID: mdl-30503699

ABSTRACT

Polycyclic aromatic hydrocarbons (PAHs) are food contaminants; besides, their oxygenated (oxy-PAHs) and nitrated (nitro-PAHs) derivatives have also been detected in some foods. This is worrying because these derivatives may be more toxic than PAHs. This study presents a new method for the determination of PAHs and their oxygenated and nitrated derivatives in coffee brew. The analytes were extracted by cold fiber solid phase microextraction (CF-SPME) with analysis by gas chromatography/mass spectrometry. The developed method presented good precision with intra-assay and inter-assay, ranged from 4.5 to 16.4%, and from 9.8 to 19.8%, respectively. Recovery ranged from 82.1 to96.3% and linearity showed good adjustment presenting determination coefficients (R2) from 0.980 to 0.999. The limits of quantification ranged from 0.025 to 0.224 µg L-1. The proposed method is simple, versatile, allows simultaneous extraction of PAHs, nitrated and oxygenated derivatives and was successfully applied to the analysis of commercial coffee samples. Benzo(k)fluoranthene, benzo(b)fluoranthene, pyrene, acenaphthylene and acenaphthene are the most abundant PAHs found in samples. In addition, 5,12-naphthacenequinone was the most abundant oxy-PAH and 1-nitropyrene was the most abundant nitro-PAH.


Subject(s)
Carbon Fiber/chemistry , Coffee/chemistry , Gas Chromatography-Mass Spectrometry/methods , Nitrates/chemistry , Oxygen/chemistry , Polycyclic Aromatic Hydrocarbons/analysis , Solid Phase Microextraction/methods , Food Contamination/analysis , Polycyclic Aromatic Hydrocarbons/chemistry , Polycyclic Aromatic Hydrocarbons/isolation & purification
11.
Bioanalysis ; 9(21): 1655-1666, 2017 Nov.
Article in English | MEDLINE | ID: mdl-29095043

ABSTRACT

AIM: The increasing use of cocaine (COC) during breastfeeding has led to growing concern about exposure of infants. Therefore, to study this exposure, a new method to analyze COC and benzoylecgonine in breast milk was developed. METHODOLOGY: A new extraction method was used for the first time to analyze COC and its major metabolite, benzoylecgonine, in breast milk using magnetic carbon nanotubes partially doped with nitrogen. RESULTS: The calibration curves were linear in the range 5.0-180.0 ng ml-1. The limit of quantification was 5.0 ng ml-1. Coefficients of variation were between 3.2 and 13.9%. Recovery was between 89.6 and 99.2%. CONCLUSION: The proposed method is simple, efficient and suitable to determine analytes in breast milk.


Subject(s)
Cocaine/analogs & derivatives , Cocaine/analysis , Gas Chromatography-Mass Spectrometry , Milk, Human/chemistry , Adult , Calibration , Cocaine/isolation & purification , Cocaine/standards , Female , Gas Chromatography-Mass Spectrometry/standards , Humans , Limit of Detection , Milk, Human/metabolism , Nanotubes, Carbon/chemistry , Solid Phase Extraction
12.
Talanta ; 167: 538-543, 2017 May 15.
Article in English | MEDLINE | ID: mdl-28340758

ABSTRACT

This article describes a simple, efficient, and versatile magnetic carbon nanotubes (MCNT) method for sampling and pre-concentration of pesticides in environmental water samples. The multi-walled magnetic carbon nanotubes were obtained by chemical deposition vapor (CVD) process. The MCNTs structures are formed of hydrophobic and hydrophilic fractions that provide great dispersion at any water matrix allowing simultaneously a high efficiency of pesticides sorption. Following the extraction, analytes were desorbed with minor amounts of solvent and analyzed by gas chromatography coupled mass spectrometry (GC/MS). The parameters amount of MCNTs used to extraction, desorption time, and desorption temperature were optimized. The method showed good linearity with determination coefficients between 0.9040 and 0.9733. The limits of detection and quantification were ranged between 0.51 and 2.29µgL-1 and between 1.19 and 5.35µgL-1 respectively. The recovery ranged from 79.9% to 111.6%. The method was applied to the determination of fifteen multiclass pesticides in real samples of environmental water collected in Minas Gerais, Brazil.


Subject(s)
Gas Chromatography-Mass Spectrometry/methods , Magnetite Nanoparticles/chemistry , Nanotubes, Carbon/chemistry , Pesticides/analysis , Solid Phase Extraction/methods , Water Pollutants, Chemical/analysis , Adsorption , Brazil , Limit of Detection , Pesticides/chemistry , Pesticides/isolation & purification , Water Pollutants, Chemical/chemistry , Water Pollutants, Chemical/isolation & purification
13.
Anal Chim Acta ; 873: 51-6, 2015 May 11.
Article in English | MEDLINE | ID: mdl-25911429

ABSTRACT

This paper describes a new, efficient and versatile method for the sampling and preconcentration of PAH in environmental water matrices using special hybrid magnetic carbon nanotubes. These N-doped amphiphilic CNT can be easily dispersed in any aqueous matrix due to the N containing hydrophilic part and at the same time show high efficiency for the adsorption of different PAH contaminants due to the very hydrophobic surface. After adsorption, the CNT can be easily removed from the medium by a simple magnetic separation. GC/MS analyses showed that the CNT method is more efficient than the use of polydimethylsiloxane (PDMS) with much lower solvent consumption, technical simplicity and time, showing good linearity (range 0.18-80.00 µg L(-1)) and determination coefficient (R(2) > 0.9810). The limit of detection ranged from 0.05 to 0.42 µg L(-1) with limit of quantification from 0.18 to 1.40 µg L(-1). Recovery (n=9) ranged from 80.50 ± 10 to 105.40 ± 12%. Intraday precision (RSD, n=9) ranged from 1.91 to 9.01%, whereas inter day precision (RSD, n=9) ranged from 7.02 to 17.94%. The method was applied to the analyses of PAH in four lake water samples collected in Belo Horizonte City, Brazil.


Subject(s)
Lakes/analysis , Magnets/chemistry , Nanotubes, Carbon/chemistry , Polycyclic Aromatic Hydrocarbons/analysis , Solid Phase Extraction/instrumentation , Water Pollutants, Chemical/analysis , Adsorption , Brazil , Dimethylpolysiloxanes/chemistry , Equipment Design , Gas Chromatography-Mass Spectrometry/instrumentation , Gas Chromatography-Mass Spectrometry/methods , Limit of Detection , Nanotubes, Carbon/ultrastructure , Solid Phase Extraction/methods
14.
J Chromatogr A ; 1388: 102-9, 2015 Apr 03.
Article in English | MEDLINE | ID: mdl-25721909

ABSTRACT

Bile acids (BAs) are derived from cholesterol and produced in the liver. The most abundant bile acids in humans are usually conjugated with glycine and taurine and are divided into primary BAs such as cholic acid (CA) and chenodeoxycholic acid (CDCA) and secondary BAs like deoxycholic acid (DCA), lithocholic acid (LCA) and ursodeoxycholic acid (UDCA). The differences amongst individual bile acids (BAs) are significant in order to distinguish different pathological processes and exposure to chemical compounds. Hollow fiber based liquid-phase microextraction (HF-LPME) is a technique that combines sample cleansing, extraction and the concentration of analytes, where a hydrophobic porous capillary membrane is impregnated with an organic extraction solvent and the lumen is filled with microliters of a phase acceptor both organic by nature. The aim of this study was to develop a new method to extract bile acids from plasma through HF-LPME of two phases (octanol as the acceptor phase) using LCMS-IT-TOF. The optimized two-phased LPME procedure for the extraction of bile acids showed limits of detection 1.0 µg L(-1) and limits of quantification of 5.0 µg L(-1). The intra-assay precision ranged from 2.1 to 11.9%. The method developed was linear over the range of 5.0-200.0 µg L(-1) for all analytes. The hollow-fiber liquid-phase microextraction method was applied to human plasma from workers exposed to organic and halogenated solvents and also to unexposed volunteers. The method is simple, low cost and it does not require large amounts of organic solvents, therefore it is quite suitable for the analysis of bile acids exposed to hepatotoxic compounds.


Subject(s)
Bile Acids and Salts/blood , Chromatography, Liquid/methods , Liquid Phase Microextraction/methods , Occupational Exposure/analysis , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Adult , Case-Control Studies , Humans , Middle Aged
15.
Analyst ; 139(15): 3683-94, 2014 Aug 07.
Article in English | MEDLINE | ID: mdl-24941103

ABSTRACT

Metabolome analysis involves the study of small molecules that are involved in the metabolic responses that occur through patho-physiological changes caused by genetic stimuli or chemical agents. Qualitative and quantitative metabolome analyses are used for the diagnosis of various diseases or chemical exposure. This article presents an overview of the different analytical methods available for performing the determination of the metabolome, including sampling, sample preparation and processing and interpretation of data. Critical comments are aimed at emphasizing the extraction methods as well as the biological samples used for metabolome analysis and data processing.


Subject(s)
Body Fluids/metabolism , Metabolome , Metabolomics/methods , Animals , Body Fluids/chemistry , Chromatography, Liquid/methods , Humans , Magnetic Resonance Spectroscopy/methods , Mass Spectrometry/methods , Specimen Handling/methods
16.
J Chem Neuroanat ; 55: 24-37, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24321291

ABSTRACT

The analysis of amino acid levels is crucial for neuroscience studies because of the roles of these molecules as neurotransmitters and their influence on behavior. The present study describes the distribution and levels of 16 amino acids (alanine, asparagine, aspartic acid, cysteine, glycine, glutamic acid, isoleucine, leucine, lysine, methionine, phenylalanine, proline, sarcosine, serine, valine, and threonine) in brain tissues (prefrontal cortex, striatum, hippocampus and cerebellum) and the serum. Neurochemical analysis was performed on Wistar rats and C57BL/6 mice using an efficient method for extraction, a fast microwave-assisted derivatization and gas chromatography-mass spectrometry analysis. The amino acid concentration varied across brain regions for 14 of the 16 analyzed molecules, with detection limits ranging from 0.02±0.005µmolL(-1) to 7.07±0.05µmolL(-1). In rats, the concentrations of alanine, glycine, methionine, serine and threonine were higher in prefrontal cortex than in other areas, whereas in mice, the concentrations of glutamic acid, leucine and proline were highest in the hippocampus. In conclusion, this study provides a cerebral profile of amino acids in brain regions and the serum of rats and mice.


Subject(s)
Amino Acids/metabolism , Brain/metabolism , Gas Chromatography-Mass Spectrometry/methods , Amino Acids/blood , Animals , Mice , Mice, Inbred C57BL , Rats , Rats, Wistar
17.
Article in English | MEDLINE | ID: mdl-23770739

ABSTRACT

The determination of the concentrations of l-amino acids in cerebrospinal fluid (CSF) has been used to gain biochemical insight into central nervous system disorders. This paper describes a microwave-assisted derivatization (MAD) method using N,O-bis-(trimethylsilyl)trifluoroacetamide (BSTFA) as a derivatizing agent for determining the concentrations of l-amino acids in human CSF by gas chromatography with mass spectrometry (GC/MS). The experimental design used to optimize the conditions showed that the optimal derivatization time was 3min with a microwave power of 210W. The method showed good performance for the validation parameters. The sensitivity was very good, with limits of detection (LODs) ranging from 0.01µmolL(-1) to 4.24µmolL(-1) and limits of quantification (LOQs) ranging from 0.02 to 7.07µmolL(-1). The precision, measured using the relative standard deviation (RSD), ranged from 4.12 to 15.59% for intra-day analyses and from 6.36 to 18.71% for inter-day analyses. The coefficients of determination (R(2)) were above 0.990 for all amino acids. The optimized and validated method was applied to the determination of amino acid concentrations in human CSF.


Subject(s)
Amino Acids/cerebrospinal fluid , Chemical Fractionation/methods , Gas Chromatography-Mass Spectrometry/methods , Amino Acids/chemistry , Amino Acids/isolation & purification , Humans , Limit of Detection , Linear Models , Microwaves , Models, Biological , Reproducibility of Results
18.
J Chromatogr A ; 1218(21): 3300-5, 2011 May 27.
Article in English | MEDLINE | ID: mdl-21093868

ABSTRACT

Polycyclic aromatic hydrocarbons (PAH) from ambient air particulate matter (PM) were analyzed by a new method that utilized direct immersion (DI) and cold fiber (CF) SPME-GC/MS. Experimental design was used to optimize the conditions of extraction by DI-CF-SPME with a 100µm polydimethylsiloxane (PDMS) fiber. The optimal conditions included a 5min equilibration at 70°C time in an ultrasonic bath with an extraction time of 60min. The optimized method was validated by the analysis of a NIST standard reference material (SRM), 1649b urban dust. The results obtained were in good agreement with certified values. PAH recoveries for reference materials were between 88 and 98%, with a relative standard deviation ranging from 5 to 17%. Detection limits (LOD) varied from 0.02 to 1.16ng and the quantification limits (LOQ) varied from 0.05 to 3.86ng. The optimized and validated method was applied to the determination of PAH from real particulate matter (PM10) and total suspended particulate (TPS) samples collected on quartz fiber filters with high volume samplers.


Subject(s)
Gas Chromatography-Mass Spectrometry/methods , Particulate Matter/chemistry , Polycyclic Aromatic Hydrocarbons/analysis , Solid Phase Microextraction/methods , Aerosols/chemistry , Dust/analysis , Equipment Design , Gas Chromatography-Mass Spectrometry/instrumentation , Reproducibility of Results , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...