Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 156
Filter
1.
J Appl Oral Sci ; 32: e20230439, 2024.
Article in English | MEDLINE | ID: mdl-38896638

ABSTRACT

OBJECTIVE: To evaluate the effect of the labiolingual diameter and construction of an endodontically treated (ET) anterior tooth with crown restoration on stress distribution and biomechanical safety under occlusal loading. METHODOLOGY: Three-dimensional finite element models were generated for maxillary central incisors with all-ceramic crown restorations. The labiolingual diameters of the tooth, defined as the horizontal distance between the protrusion of the labial and lingual surfaces, were changed as follows: (D1) 6.85 mm, (D2) 6.35 mm, and (D3) 5.85 mm. The model was constructed as follows: (S0) vital pulp tooth; (S1) ET tooth; (S2) ET tooth with a 2 mm ferrule, restored with a fiber post and composite resin core; (S3) ET tooth without a ferrule, restored with a fiber post and composite resin core. A total of 12 models were developed. In total, two force loads (100 N) were applied to the crown's incisal edge and palatal surface at a 45° oblique angle to the longitudinal axis of the teeth. The Von Mises stress distribution and maximum stress of the models were analyzed. RESULTS: Regardless of the loading location, stress concentration and maximum stress (34.07~66.78MPa) in all models occurred in the labial cervical 1/3 of each root. Both labiolingual diameter and construction influenced the maximum stress of the residual tooth tissue, with the impact of the labiolingual diameter being greater. A reduction in labiolingual diameter led to increased maximum stress throughout the tooth. The ferrule reduced the maximum stress of the core of S2 models (7.15~10.69 MPa), which is lower compared with that of S3 models (19.45~43.67 MPa). CONCLUSION: The labiolingual diameter exerts a greater impact on the biomechanical characteristics of ET anterior teeth with crown restoration, surpassing the influence of the construction. The ferrule can reduce the maximum stress of the core and maintain the uniformity of stress distribution.


Subject(s)
Composite Resins , Crowns , Dental Stress Analysis , Finite Element Analysis , Incisor , Tooth, Nonvital , Tooth, Nonvital/physiopathology , Humans , Biomechanical Phenomena , Incisor/anatomy & histology , Incisor/physiology , Composite Resins/chemistry , Dental Stress Analysis/methods , Post and Core Technique , Reproducibility of Results , Stress, Mechanical , Reference Values , Bite Force , Imaging, Three-Dimensional/methods , Dental Prosthesis Design , Materials Testing , Tooth Crown/anatomy & histology , Tooth Crown/physiology
2.
ACS Cent Sci ; 10(5): 1065-1083, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38799671

ABSTRACT

Glycosylation plays a pivotal role in the intricate landscape of human cholangiocarcinoma (CCA), actively participating in key pathophysiological processes driving tumor progression. Among the various glycosylation modifications, O-linked ß-N-acetyl-glucosamine modification (O-GlcNAcylation) emerges as a dynamic regulator influencing diverse tumor-associated biological activities. In this study, we employed a state-of-the-art chemical proteomic approach to analyze intact glycopeptides, unveiling the critical role of O-GlcNAcylation in orchestrating Keratin 18 (K18) and its interplay with tricarboxylic acid (TCA) cycle enzymes, specifically isocitrate dehydrogenases (IDHs), to propel CCA progression. Our findings shed light on the mechanistic intricacies of O-GlcNAcylation, revealing that site-specific modification of K18 on Ser 30 serves as a stabilizing factor, amplifying the expression of cell cycle checkpoints. This molecular event intricately fosters cell cycle progression and augments cellular growth in CCA. Notably, the interaction between O-GlcNAcylated K18 and IDHs orchestrates metabolic reprogramming by down-regulating citrate and isocitrate levels while elevating α-ketoglutarate (α-KG). These metabolic shifts further contribute to the overall tumorigenic potential of CCA. Our study thus expands the current understanding of protein O-GlcNAcylation and introduces a new layer of complexity to post-translational control over metabolism and tumorigenesis.

3.
IEEE J Biomed Health Inform ; 28(7): 4306-4316, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38709611

ABSTRACT

Dysregulation of miRNAs is closely related to the progression of various diseases, so identifying disease-related miRNAs is crucial. Most recently proposed methods are based on graph reasoning, while they did not completely exploit the topological structure composed of the higher-order neighbor nodes and the global and local features of miRNA and disease nodes. We proposed a prediction method, MDAP, to learn semantic features of miRNA and disease nodes based on various meta-paths, as well as node features from the entire heterogeneous network perspective, and node pair attributes. Firstly, for both the miRNA and disease nodes, node category-wise meta-paths were constructed to integrate the similarity and association connection relationships. Each target node has its specific neighbor nodes for each meta-path, and the neighbors of longer meta-paths constitute its higher-order neighbor topological structure. Secondly, we constructed a meta-path specific graph convolutional network module to integrate the features of higher-order neighbors and their topology, and then learned the semantic representations of nodes. Thirdly, for the entire miRNA-disease heterogeneous network, a global-aware graph convolutional autoencoder was built to learn the network-view feature representations of nodes. We also designed semantic-level and representation-level attentions to obtain informative semantic features and node representations. Finally, the strategy based on the parallel convolutional-deconvolutional neural networks were designed to enhance the local feature learning for a pair of miRNA and disease nodes. The experiment results showed that MDAP outperformed other state-of-the-art methods, and the ablation experiments demonstrated the effectiveness of MDAP's major innovations. MDAP's ability in discovering potential disease-related miRNAs was further analyzed by the case studies over three diseases.


Subject(s)
MicroRNAs , Semantics , MicroRNAs/genetics , Humans , Computational Biology/methods , Neural Networks, Computer , Algorithms , Deep Learning
4.
Biotechnol Biofuels Bioprod ; 17(1): 55, 2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38643207

ABSTRACT

BACKGROUND: The saprophytic filamentous fungus Trichoderma reesei represents one of the most prolific cellulase producers. The bulk production of lignocellulolytic enzymes by T. reesei not only relies on the efficient transcription of cellulase genes but also their efficient secretion after being translated. However, little attention has been paid to the functional roles of the involved secretory pathway in the high-level production of cellulases in T. reesei. Rab GTPases are key regulators in coordinating various vesicle trafficking associated with the eukaryotic secretory pathway. Specifically, Rab7 is a representative GTPase regulating the transition of the early endosome to the late endosome followed by its fusion to the vacuole as well as homotypic vacuole fusion. Although crosstalk between the endosomal/vacuolar pathway and the secretion pathway has been reported, the functional role of Rab7 in cellulase production in T. reesei remains unknown. RESULTS: A TrRab7 was identified and characterized in T. reesei. TrRab7 was shown to play important roles in T. reesei vegetative growth and vacuole morphology. Whereas knock-down of Trrab7 significantly compromised the induced production of T. reesei cellulases, overexpression of the key transcriptional activator, Xyr1, restored the production of cellulases in the Trrab7 knock-down strain (Ptcu-rab7KD) on glucose, indicating that the observed defective cellulase biosynthesis results from the compromised cellulase gene transcription. Down-regulation of Trrab7 was also found to make T. reesei more sensitive to various stresses including carbon starvation. Interestingly, overexpression of Snf1, a serine/threonine protein kinase known as an energetic sensor, partially restored the cellulase production of Ptcu-rab7KD on Avicel, implicating that TrRab7 is involved in an energetic adaptation to carbon starvation which contributes to the successful cellulase gene expression when T. reesei is transferred from glucose to cellulose. CONCLUSIONS: TrRab7 was shown to play important roles in T. reesei development and a stress response to carbon starvation resulting from nutrient shift. This adaptation may allow T. reesei to successfully initiate the inducing process leading to efficient cellulase production. The present study provides useful insights into the functional involvement of the endosomal/vacuolar pathway in T. reesei development and hydrolytic enzyme production.

5.
J Appl Microbiol ; 135(3)2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38449343

ABSTRACT

AIMS: This study aimed to investigate the changes of cell membrane structure and function of Issatchenkia terricola under citric acid by performing physiological analysis. METHODS AND RESULTS: The membrane integrity, surface hydrophobicity, structure, fluidity, apoptosis, and fatty acid methyl esters composition of I. terricola WJL-G4 cells were determined by propidium iodide staining, microbial adhesion to hydrocarbon test, transmission electron microscopy analysis, fluorescence anisotropy, flow cytometry, and gas chromatography-mass, respectively. The results showed that with the increasing of citric acid concentrations, the cell vitality, membrane integrity, and fluidity of I. terricola reduced; meanwhile, apoptosis rate, membrane permeable, hydrophobicity, and ergosterol contents augmented significantly. Compared to control, the activities of Na+, K+-ATPase, and Ca2+, Mg2+-ATPase increased by 3.73-fold and 6.70-fold, respectively, when citric acid concentration increased to 20 g l-1. The cells cracked and their cytoplasm effused when the citric acid concentration reached 80 g l-1. CONCLUSIONS: I. terricola could successfully adjust its membrane structure and function below 60 g l-1 of citric acid. However, for citric acid concentrations above 80 g l-1, its structure and function were dramatically changed, which might result in reduced functionality.


Subject(s)
Cell Membrane Structures , Citric Acid , Pichia , Citric Acid/pharmacology , Fatty Acids/pharmacology , Cell Membrane , Membrane Fluidity
6.
J Agric Food Chem ; 72(10): 5391-5402, 2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38427803

ABSTRACT

α-Glucanotransferases of the CAZy family GH70 convert starch-derived donors to industrially important α-glucans. Here, we describe characteristics of a novel GtfB-type 4,6-α-glucanotransferase of high enzyme activity (60.8 U mg-1) from Limosilactobacillus reuteri N1 (LrN1 GtfB), which produces surprisingly large quantities of soluble protein in heterologous expression (173 mg pure protein per L of culture) and synthesizes the reuteran-like α-glucan with (α1 → 6) linkages in linear chains and branch points. Protein structural analysis of LrN1 GtfB revealed the potential crucial residues at subsites -2∼+2, particularly H265, Y214, and R302, in the active center as well as previously unidentified surface binding sites. Furthermore, molecular dynamic simulations have provided unprecedented insights into linkage specificity hallmarks of the enzyme. Therefore, LrN1 GtfB represents a potent enzymatic tool for starch conversion, and this study promotes our knowledge on the structure-function relationship of GH70 GtfB α-glucanotransferases, which might facilitate the production of tailored α-glucans by enzyme engineering in future.


Subject(s)
Glycogen Debranching Enzyme System , Limosilactobacillus reuteri , Molecular Dynamics Simulation , Glucans/chemistry , Starch/metabolism , Structure-Activity Relationship
7.
J. appl. oral sci ; 32: e20230439, 2024. tab, graf
Article in English | LILACS-Express | LILACS | ID: biblio-1558238

ABSTRACT

Abstract Objective To evaluate the effect of the labiolingual diameter and construction of an endodontically treated (ET) anterior tooth with crown restoration on stress distribution and biomechanical safety under occlusal loading. Methodology Three-dimensional finite element models were generated for maxillary central incisors with all-ceramic crown restorations. The labiolingual diameters of the tooth, defined as the horizontal distance between the protrusion of the labial and lingual surfaces, were changed as follows: (D1) 6.85 mm, (D2) 6.35 mm, and (D3) 5.85 mm. The model was constructed as follows: (S0) vital pulp tooth; (S1) ET tooth; (S2) ET tooth with a 2 mm ferrule, restored with a fiber post and composite resin core; (S3) ET tooth without a ferrule, restored with a fiber post and composite resin core. A total of 12 models were developed. In total, two force loads (100 N) were applied to the crown's incisal edge and palatal surface at a 45° oblique angle to the longitudinal axis of the teeth. The Von Mises stress distribution and maximum stress of the models were analyzed. Results Regardless of the loading location, stress concentration and maximum stress (34.07~66.78MPa) in all models occurred in the labial cervical 1/3 of each root. Both labiolingual diameter and construction influenced the maximum stress of the residual tooth tissue, with the impact of the labiolingual diameter being greater. A reduction in labiolingual diameter led to increased maximum stress throughout the tooth. The ferrule reduced the maximum stress of the core of S2 models (7.15~10.69 MPa), which is lower compared with that of S3 models (19.45~43.67 MPa). Conclusion The labiolingual diameter exerts a greater impact on the biomechanical characteristics of ET anterior teeth with crown restoration, surpassing the influence of the construction. The ferrule can reduce the maximum stress of the core and maintain the uniformity of stress distribution.

9.
J Dent ; 138: 104733, 2023 11.
Article in English | MEDLINE | ID: mdl-37783373

ABSTRACT

OBJECTIVE: To investigate the cross-linking and protective effect of artemisinin (ART), dihydroartemisinin (DHA), and artesunate (AST) on collagen fibers of demineralized dentin surface. METHODS: Molecular docking was used to predict potential interactions of ART, DHA, and AST with dentin type I collagen. Human third molars without caries were completely demineralized and treated with different solutions for 1 min. The molecular interactions and cross-linking degree of ART and its derivatives with dentin collagen were evaluated by FTIR spectroscopy, total extractable protein content, and a ninhydrin assay. Scanning electron microscopy, hydroxyproline release, and ultimate microtensile strength tests (µUTS) were employed to confirm the mechanical properties and anti-collagenase degradation properties of dentin collagen fibers. RESULTS: ART, DHA, and AST combined with dentin type I collagen mainly through hydrogen bonding and hydrophobic interactions, and the cross-linking reaction sites were mainly C=O and CN functional groups. Compared to the control group, ART and its derivatives significantly increased the degree of cross-linking. Additionally, significant increases were observed in resistance to enzymatic digestion and mechanical properties of the artemisinin and its derivatives group. CONCLUSION: ART, DHA, and AST could cross-link with demineralized dentin collagen, through improving the mechanical properties and anti-collagenase degradation properties. CLINICAL SIGNIFICANCE: The study endorses the potential use of ART and its derivatives as a prospective collagen cross-linking agent for degradation-resistant and long-period dentin bonding in composite resin restorations.


Subject(s)
Artemisinins , Dental Bonding , Humans , Collagen Type I , Cross-Linking Reagents/pharmacology , Cross-Linking Reagents/analysis , Cross-Linking Reagents/chemistry , Molecular Docking Simulation , Prospective Studies , Tensile Strength , Collagen/pharmacology , Collagen/chemistry , Collagenases/analysis , Collagenases/pharmacology , Artemisinins/pharmacology , Artemisinins/analysis , Dentin , Dental Bonding/methods , Dentin-Bonding Agents/pharmacology , Dentin-Bonding Agents/chemistry
10.
Biotechnol Biofuels Bioprod ; 16(1): 161, 2023 Oct 27.
Article in English | MEDLINE | ID: mdl-37891680

ABSTRACT

BACKGROUND: The well-known industrial fungus Trichoderma reesei has an excellent capability of secreting a large amount of cellulases and xylanases. The induced expression of cellulase and xylanase genes is tightly controlled at the transcriptional level. However, compared to the intensive studies on the intricate regulatory mechanism of cellulase genes, efforts to understand how xylanase genes are regulated are relatively limited, which impedes the further improvement of xylanase production by T. reesei via rational strain engineering. RESULTS: To identify transcription factors involved in regulating xylanase gene expression in T. reesei, yeast one-hybrid screen was performed based on the promoters of two major extracellular xylanase genes xyn1 and xyn2. A putative transcription factor named XTR1 showing significant binding capability to the xyn1 promoter but not that of xyn2, was successfully isolated. Deletion of xtr1 significantly increased the transcriptional level of xyn1, but only exerted a minor promoting effect on that of xyn2. The xylanase activity was increased by ~ 50% with XTR1 elimination but the cellulase activity was hardly affected. Subcellular localization analysis of XTR1 fused to a green fluorescence protein demonstrated that XTR1 is a nuclear protein. Further analyses revealed the precise binding site of XTR1 and nucleotides critical for the binding within the xyn1 promoter. Moreover, competitive EMSAs indicated that XTR1 competes with the essential transactivator XYR1 for binding to the xyn1 promoter. CONCLUSIONS: XTR1 represents a new transcriptional repressor specific for controlling xylanase gene expression. Isolation and functional characterization of this new factor not only contribute to further understanding the stringent regulatory network of xylanase genes, but also provide important clues for boosting xylanase biosynthesis in T. reesei.

11.
Opt Lett ; 48(20): 5285-5288, 2023 Oct 15.
Article in English | MEDLINE | ID: mdl-37831848

ABSTRACT

Imaging through a scattering medium is of great significance in many areas. Especially, speckle correlation imaging has been valued for its noninvasiveness. In this work, we report a deep learning solution that incorporates the physical model and an additional regularization for high-fidelity speckle correlation imaging. Without large-scale data to train, the physical model and regularization prior provide a correct direction for neural network to precisely reconstruct hidden objects from speckle under different scattering scenarios and noise levels. Experimental results demonstrate that the proposed method presents a significant advance in improving generalization and combating the invasion of noise.

12.
J Am Chem Soc ; 145(43): 23670-23680, 2023 11 01.
Article in English | MEDLINE | ID: mdl-37857274

ABSTRACT

Executing glycan editing at a molecular level not only is pivotal for the elucidation of complicated mechanisms involved in glycan-relevant biological processes but also provides a promising solution to potentiate disease therapy. However, the precision control of glycan modification or glyco-editing on a selected glycoprotein is by far a grand challenge. Of note is to preserve the intact cellular glycan landscape, which is preserved after editing events are completed. We report herein a versatile, traceless glycan modification methodology for customizing the glycoforms of targeted proteins (subtypes), by orchestrating chemical- and photoregulation in a protein-selective glycoenzymatic system. This method relies on a three-module, ligand-photocleavable linker-glycoenzyme (L-P-G) conjugate. We demonstrated that RGD- or synthetic carbohydrate ligand-containing conjugates (RPG and SPG) would not activate until after the ligand-receptor interaction is accomplished (chemical regulation). RPG and SPG can both release the glycoenzyme upon photoillumination (photoregulation). The adjustable glycoenzyme activity, combined with ligand recognition selectivity, minimizes unnecessary glycan editing perturbation, and photolytic cleavage enables precise temporal control of editing events. An altered target protein turnover and dimerization were observed in our system, emphasizing the significance of preserving the native physiological niche of a particular protein when precise modification on the carbohydrate epitope occurs.


Subject(s)
Carbohydrates , Polysaccharides , Ligands , Polysaccharides/chemistry , Glycoproteins/chemistry
13.
Int J Biol Macromol ; 252: 126452, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-37619677

ABSTRACT

The transglucosidase activity of GH31 α-glucosidases is employed to catalyze the synthesis of prebiotic isomaltooligosaccharides (IMOs) using the malt syrup prepared from starch as substrate. Continuous mining for new GH31 α-glucosidases with high stability and efficient transglucosidase activity is critical for enhancing the supply and quality of IMO preparations. In the present study, two α-glucosidases (MT31α1 and MT31α2) from Myceliophthora thermophila were explored for biochemical characterization. The optimum pH and temperature of MT31α1 and MT31α2 were determined to be pH 4.5 and 65 °C, and pH 6.5 and 60 °C, respectively. Both MT31α1 and MT31α2 were shown to be stable in the pH range of 3.0 to 10.0. MT31α1 displayed a high thermostability, retaining 60 % of activity after incubation for 24 h at 55 °C. MT31α1 is highly active on substrates with all types of α-glucosidic linkages. In contrast, MT31α2 showed preference for substrates with α-(1→3) and α-(1→4) linkages. Importantly, MT31α1 was able to synthesize IMOs and the conversion rate of maltose into the main functional IMOs components reached over 40 %. Moreover, MT31α2 synthesizes glucooligosaccharides with (consecutive) α-(1→3) linkages. Taken together, MT31α1 and MT31α2, showing distinct substrate and product specificity, hold clear potential for the synthesis of prebiotic glucooligosaccharides.


Subject(s)
Sordariales , alpha-Glucosidases , alpha-Glucosidases/metabolism , Glycoside Hydrolases/metabolism , Sordariales/metabolism , Maltose/metabolism , Substrate Specificity
14.
Mol Med Rep ; 28(4)2023 Oct.
Article in English | MEDLINE | ID: mdl-37594052

ABSTRACT

Following the publication of this paper, it was drawn to the Editor's attention by a concerned reader that certain of the cell migration and invasion assay data shown in Fig. 5C were strikingly similar to data appearing in different form in other articles by different authors at different research institutes. Owing to the fact that the contentious data in the above article were already under consideration for publication, or had already been published, prior to its submission to Molecular Medicine Reports, the Editor has decided that this paper should be retracted from the Journal. The authors were asked for an explanation to account for these concerns, but the Editorial Office did not receive a reply. The Editor apologizes to the readership for any inconvenience caused. [Molecular Medicine Reports 19: 1903­1910, 2019; DOI: 10.3892/mmr.2019.9826].

15.
J Agric Food Chem ; 71(31): 11993-12003, 2023 Aug 09.
Article in English | MEDLINE | ID: mdl-37523749

ABSTRACT

To achieve cost-effective production of lignocellulolytic enzymes for biorefinery processes, engineering transcription factors represents a powerful strategy to boost cellulase and xylanase in Trichoderma reesei. In this study, a novel mutation (R434L) in xylanase regulator 1 (Xyr1) was identified based on the yeast one-hybrid screening system. The point mutation was located in the middle homology region of Xyr1 with unclear functions, indicating a significant role for this domain in tuning Xyr1 transactivation. When constitutively expressed in T. reesei Δxyr1 (OEXR434L), Xyr1R434L led to highly improved production of both cellulases and xylanases on glucose compared with a strain similarly expressing Xyr1 (OEX). The respective 0.8- and 0.7-fold increases in extracellular pNPCase and xylanolytic activity were further verified to result from the greatly elevated transcription of major cellulase and xylanase genes in OEXR434L. Moreover, the saccharification efficiency of corn stover with OEXR434L enzyme cocktails was enhanced by 21% compared with that of OEX.


Subject(s)
Cellulase , Cellulases , Trichoderma , Cellulase/genetics , Cellulase/metabolism , Glucose , Promoter Regions, Genetic , Cellulases/genetics , Mutation , Trichoderma/metabolism , Gene Expression Regulation, Fungal , Fungal Proteins/genetics , Fungal Proteins/metabolism
16.
BMC Med Educ ; 23(1): 119, 2023 Feb 17.
Article in English | MEDLINE | ID: mdl-36803238

ABSTRACT

OBJECTIVE: To investigate the role of standard patients (SPs) and examiners as assessors for scoring in the dental objective structured clinical examination (OSCE) system and to evaluate the scoring differences between them. METHODS: We developed the doctor-patient communication and clinical examination station in the OSCE system. The examination time of this station was 10 min, and the examination institution wrote the script and recruited SPs. A total of 146 examinees who received standardized resident training at the Nanjing Stomatological Hospital, Medical School of Nanjing University between 2018 and 2021 were assessed. They were scored by SPs and examiners according to the same scoring rubrics. Subsequently, the SPSS software was used to analyze the examination results of different assessors and evaluate the consistency. RESULTS: The average score of all examinees provided by SPs and examiners was 90.45 ± 3.52 and 91.53 ± 4.13, respectively. The consistency analysis showed that the intraclass correlation coefficient was 0.718, which was indicative of medium consistency. CONCLUSION: Our findings showed that SPs could be used directly as assessors, as they could provide a simulated and realistic clinical setting and create favorable conditions for comprehensive competence training and improvement for medical students.


Subject(s)
Clinical Competence , Educational Measurement , Humans , Educational Measurement/methods , Physical Examination , Schools, Medical , Patients
17.
J Healthc Eng ; 2023: 7139560, 2023.
Article in English | MEDLINE | ID: mdl-36818382

ABSTRACT

Objective: To explore a centralized approach to build test sets and assess the performance of an artificial intelligence medical device (AIMD) which is intended for computer-aided diagnosis of diabetic retinopathy (DR). Method: A framework was proposed to conduct data collection, data curation, and annotation. Deidentified colour fundus photographs were collected from 11 partner hospitals with raw labels. Photographs with sensitive information or authenticity issues were excluded during vetting. A team of annotators was recruited through qualification examinations and trained. The annotation process included three steps: initial annotation, review, and arbitration. The annotated data then composed a standardized test set, which was further imported to algorithms under test (AUT) from different developers. The algorithm outputs were compared with the final annotation results (reference standard). Result: The test set consists of 6327 digital colour fundus photographs. The final labels include 5 stages of DR and non-DR, as well as other ocular diseases and photographs with unacceptable quality. The Fleiss Kappa was 0.75 among the annotators. The Cohen's kappa between raw labels and final labels is 0.5. Using this test set, five AUTs were tested and compared quantitatively. The metrics include accuracy, sensitivity, and specificity. The AUTs showed inhomogeneous capabilities to classify different types of fundus photographs. Conclusions: This article demonstrated a workflow to build standardized test sets and conduct algorithm testing of the AIMD for computer-aided diagnosis of diabetic retinopathy. It may provide a reference to develop technical standards that promote product verification and quality control, improving the comparability of products.


Subject(s)
Diabetes Mellitus , Diabetic Retinopathy , Humans , Artificial Intelligence , Algorithms , Diagnosis, Computer-Assisted/methods , Photography/methods , Computers
18.
J Dent ; 129: 104411, 2023 02.
Article in English | MEDLINE | ID: mdl-36626977

ABSTRACT

OBJECTIVES: The objective of this study is to value the long-term antibacterial capability and adhesive properties of one-step self-etching dental adhesive containing silver nanoparticles (AgNPs) synthesized in situ. METHODS: One-step self-etching adhesives with various weight percentages of silver 2-ethylhezanoate (0%, 0.05%, 0.10%, and 0.20%) were obtained by in-situ synthesis; the sizes and distribution of the AgNPs in resin were observed. The antibacterial effects of dentin-resin specimens were assessed by various test methods after being aged for 1 week to 1 year. The microtensile bond strength (µTBS) and interfacial nanoleakage (NL) were evaluated using extracted human teeth after being aged for 1 day and 1 year. RESULTS: Uniform distribution of AgNPs in resin was observed in all experimental groups, and the average size was 4.71 nm-4.81 nm. All groups containing AgNPs showed significant antibacterial differences from the control group (P<0.05) over the ageing of 1 year. Although the increase of concentration tended to improve antibacterial activity, significant differences were not observed between the 0.10% and 0.20% groups (P>0.05). No significant differences were observed between all experimental groups and the control group in µTBS testing and NL testing at 1-day and 1-year time points (P>0.05). CONCLUSIONS: 0.10% AgNPs synthesized in situ might be appropriate to impart a long-term antibacterial ability to the one-step self-etching adhesive, without affecting its adhesive performance. CLINICAL SIGNIFICANCE: This study suggests that in-situ synthesis of AgNPs is an effective method to improve the antibacterial ability of dental adhesives with the potential to inhibit secondary caries.


Subject(s)
Dental Bonding , Metal Nanoparticles , Humans , Aged , Silver/pharmacology , Dental Bonding/methods , Dental Cements/pharmacology , Resin Cements/chemistry , Dentin-Bonding Agents/pharmacology , Dentin-Bonding Agents/chemistry , Anti-Bacterial Agents/pharmacology , Tensile Strength , Materials Testing , Dentin/chemistry
19.
Appl Environ Microbiol ; 89(1): e0142122, 2023 01 31.
Article in English | MEDLINE | ID: mdl-36602369

ABSTRACT

The filamentous fungus Trichoderma reesei is one of the most prolific cellulase producers and has been established as a model microorganism for investigating mechanisms modulating eukaryotic gene expression. Identification and functional characterization of transcriptional regulators involved in complex and stringent regulation of cellulase genes are, however, not yet complete. Here, a Zn(II)2Cys6-type transcriptional factor TAM1 that is homologous to Aspergillus nidulans TamA involved in nitrogen metabolism, was found not only to regulate ammonium utilization but also to control cellulase gene expression in T. reesei. Whereas Δtam1 cultivated with peptone as a nitrogen source did not exhibit a growth defect that was observed on ammonium, it was still significantly compromised in cellulase biosynthesis. The absence of TAM1 almost fully abrogated the rapid cellulase gene induction in a resting-cell-inducing system. Overexpression of gdh1 encoding the key ammonium assimilatory enzyme in Δtam1 rescued the growth defect on ammonium but not the defect in cellulase gene expression. Of note, mutation of the Zn(II)2Cys6 DNA-binding motif of TAM1 hardly affected cellulase gene expression, while a truncated ARE1 mutant lacking the C-terminal 12 amino acids that are required for the interaction with TAM1 interfered with cellulase biosynthesis. The defect in cellulase induction of Δtam1 was rescued by overexpression of the key transactivator for cellulase gene, XYR1. Our results thus identify a nitrogen metabolism regulator as a new modulator participating in the regulation of induced cellulase gene expression. IMPORTANCE Transcriptional regulators are able to integrate extracellular nutrient signals and exert a combinatorial control over various metabolic genes. A plethora of such factors therefore constitute a complex regulatory network ensuring rapid and accurate cellular response to acquire and utilize nutrients. Despite the in-depth mechanistic studies of functions of the Zn(II)2Cys6-type transcriptional regulator TamA and its orthologues in nitrogen utilization, their involvement in additional physiological processes remains unknown. In this study, we demonstrated that TAM1 exerts a dual regulatory role in mediating ammonium utilization and induced cellulase production in the well known cellulolytic fungus Trichoderma reesei, suggesting a potentially converged regulatory node between nitrogen utilization and cellulase biosynthesis. This study not only contributes to unveiling the intricate regulatory network underlying cellulase gene expression in cellulolytic fungus but also helps expand our knowledge of fungal strategies to achieve efficient and coordinated nutrient acquisition for rapid propagation.


Subject(s)
Cellulase , Hypocreales , Trichoderma , Cellulase/genetics , Cellulase/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Hypocreales/genetics , Gene Expression , Trichoderma/metabolism , Gene Expression Regulation, Fungal , Fungal Proteins/genetics , Fungal Proteins/metabolism
20.
Crit Rev Food Sci Nutr ; 63(21): 5247-5267, 2023.
Article in English | MEDLINE | ID: mdl-34907830

ABSTRACT

Polyphenols exhibit various beneficial biological activities and represent very promising candidates as active compounds for food industry. However, the low solubility, poor stability and low bioavailability of polyphenols have severely limited their industrial applications. Enzymatic glycosylation is an effective way to improve the physicochemical properties of polyphenols. As efficient transglucosidases, glycoside hydrolase family 70 (GH70) glucansucrases naturally catalyze the synthesis of polysaccharides and oligosaccharides from sucrose. Notably, GH70 glucansucrases show broad acceptor substrate promiscuity and catalyze the glucosylation of a wide range of non-carbohydrate hydroxyl group-containing molecules, including benzenediol, phenolic acids, flavonoids and steviol glycosides. Branching sucrase enzymes, a newly established subfamily of GH70, are shown to possess a broader acceptor substrate binding pocket that acts efficiently for glucosylation of larger size polyphenols such as flavonoids. Here we present a comprehensive review of glucosylation of polyphenols using GH70 glucansucrase and branching sucrases. Their catalytic efficiency, the regioselectivity of glucosylation and the structure of generated products are described for these reactions. Moreover, enzyme engineering is effective for improving their catalytic efficiency and product specificity. The combined information provides novel insights on the glucosylation of polyphenols by GH70 glucansucrases and branching sucrases, and may promote their applications.


Subject(s)
Glycoside Hydrolases , Polyphenols , Sucrase/chemistry , Sucrase/metabolism , Flavonoids
SELECTION OF CITATIONS
SEARCH DETAIL
...