Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 264
Filter
1.
Autophagy ; : 1-2, 2024 Jul 06.
Article in English | MEDLINE | ID: mdl-38950891

ABSTRACT

In macroautophagy, lysosomes fuse with closed autophagosomes but not with unclosed ones. This is achieved, at least in part, by the temporally regulated recruitment of the autophagosomal SNARE STX17 (syntaxin 17) to only mature autophagosomes. However, the molecular mechanism by which STX17 recognizes autophagosomal maturation remains unknown. Our recent study revealed that STX17 recruitment is regulated by the electrostatic interaction between the positively charged C-terminal region of STX17 and the autophagosomal membrane, which becomes negatively charged during maturation due to the accumulation of phosphatidylinositol-4-phosphate (PtdIns4P). Here, we propose an electrostatic maturation model of the autophagosome.

2.
Elife ; 122024 Jun 04.
Article in English | MEDLINE | ID: mdl-38831696

ABSTRACT

During macroautophagy, cytoplasmic constituents are engulfed by autophagosomes. Lysosomes fuse with closed autophagosomes but not with unclosed intermediate structures. This is achieved in part by the late recruitment of the autophagosomal SNARE syntaxin 17 (STX17) to mature autophagosomes. However, how STX17 recognizes autophagosome maturation is not known. Here, we show that this temporally regulated recruitment of STX17 depends on the positively charged C-terminal region of STX17. Consistent with this finding, mature autophagosomes are more negatively charged compared with unclosed intermediate structures. This electrostatic maturation of autophagosomes is likely driven by the accumulation of phosphatidylinositol 4-phosphate (PI4P) in the autophagosomal membrane. Accordingly, dephosphorylation of autophagosomal PI4P prevents the association of STX17 to autophagosomes. Furthermore, molecular dynamics simulations support PI4P-dependent membrane insertion of the transmembrane helices of STX17. Based on these findings, we propose a model in which STX17 recruitment to mature autophagosomes is temporally regulated by a PI4P-driven change in the surface charge of autophagosomes.


Subject(s)
Autophagosomes , Phosphatidylinositol Phosphates , Qa-SNARE Proteins , Qa-SNARE Proteins/metabolism , Qa-SNARE Proteins/genetics , Autophagosomes/metabolism , Phosphatidylinositol Phosphates/metabolism , Humans , Molecular Dynamics Simulation , Autophagy/physiology
5.
Nat Commun ; 15(1): 91, 2024 Jan 02.
Article in English | MEDLINE | ID: mdl-38167876

ABSTRACT

The formation of autophagosomes involves dynamic morphological changes of a phagophore from a flat membrane cisterna into a cup-shaped intermediate and a spherical autophagosome. However, the physical mechanism behind these morphological changes remains elusive. Here, we determine the average shapes of phagophores by statistically investigating three-dimensional electron micrographs of more than 100 phagophores. The results show that the cup-shaped structures adopt a characteristic morphology; they are longitudinally elongated, and the rim is catenoidal with an outwardly recurved shape. To understand these characteristic shapes, we establish a theoretical model of the shape of entire phagophores. The model quantitatively reproduces the average morphology and reveals that the characteristic shape of phagophores is primarily determined by the relative size of the open rim to the total surface area. These results suggest that the seemingly complex morphological changes during autophagosome formation follow a stable path determined by elastic bending energy minimization.

6.
J Cell Biol ; 223(3)2024 03 04.
Article in English | MEDLINE | ID: mdl-38227290

ABSTRACT

Leucine-rich repeat kinase 2 (LRRK2), a Rab kinase associated with Parkinson's disease and several inflammatory diseases, has been shown to localize to stressed lysosomes and get activated to regulate lysosomal homeostasis. However, the mechanisms of LRRK2 recruitment and activation have not been well understood. Here, we found that the ATG8 conjugation system regulates the recruitment of LRRK2 as well as LC3 onto single membranes of stressed lysosomes/phagosomes. This recruitment did not require FIP200-containing autophagy initiation complex, nor did it occur on double-membrane autophagosomes, suggesting independence from canonical autophagy. Consistently, LRRK2 recruitment was regulated by the V-ATPase-ATG16L1 axis, which requires the WD40 domain of ATG16L1 and specifically mediates ATG8 lipidation on single membranes. This mechanism was also responsible for the lysosomal stress-induced activation of LRRK2 and the resultant regulation of lysosomal secretion and enlargement. These results indicate that the V-ATPase-ATG16L1 axis serves a novel non-autophagic role in the maintenance of lysosomal homeostasis by recruiting LRRK2.


Subject(s)
Adenosine Triphosphatases , Autophagy-Related Proteins , Autophagy , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2 , Lysosomes , Adenosine Triphosphatases/metabolism , Autophagosomes , Cell Cycle Proteins , Humans , Animals , Mice , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/metabolism , Autophagy-Related Proteins/metabolism
7.
Cell ; 187(2): 219-224, 2024 01 18.
Article in English | MEDLINE | ID: mdl-38242078

ABSTRACT

50 years ago, cell biology was a nascent field. Today, it is a vast discipline whose principles and tools are also applied to other disciplines; vice versa, cell biologists are inspired by other fields. So, the question begs: what is cell biology? The answers are as diverse as the people who define it.

8.
Nat Genet ; 55(11): 1929-1940, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37919452

ABSTRACT

Phospholipase A/acyltransferase 3 (PLAAT3) is a phospholipid-modifying enzyme predominantly expressed in neural and white adipose tissue (WAT). It is a potential drug target for metabolic syndrome, as Plaat3 deficiency in mice protects against diet-induced obesity. We identified seven patients from four unrelated consanguineous families, with homozygous loss-of-function variants in PLAAT3, who presented with a lipodystrophy syndrome with loss of fat varying from partial to generalized and associated with metabolic complications, as well as variable neurological features including demyelinating neuropathy and intellectual disability. Multi-omics analysis of mouse Plaat3-/- and patient-derived WAT showed enrichment of arachidonic acid-containing membrane phospholipids and a strong decrease in the signaling of peroxisome proliferator-activated receptor gamma (PPARγ), the master regulator of adipocyte differentiation. Accordingly, CRISPR-Cas9-mediated PLAAT3 inactivation in human adipose stem cells induced insulin resistance, altered adipocyte differentiation with decreased lipid droplet formation and reduced the expression of adipogenic and mature adipocyte markers, including PPARγ. These findings establish PLAAT3 deficiency as a hereditary lipodystrophy syndrome with neurological manifestations, caused by a PPARγ-dependent defect in WAT differentiation and function.


Subject(s)
Lipodystrophy , PPAR gamma , Humans , Animals , Mice , PPAR gamma/genetics , PPAR gamma/metabolism , Adipocytes , Adipogenesis/genetics , Lipodystrophy/genetics , Lipodystrophy/metabolism , Phospholipases
9.
Sci Adv ; 9(25): eadh1281, 2023 06 23.
Article in English | MEDLINE | ID: mdl-37352354

ABSTRACT

Autophagosome biogenesis requires a localized perturbation of lipid membrane dynamics and a unique protein-lipid conjugate. Autophagy-related (ATG) proteins catalyze this biogenesis on cellular membranes, but the underlying molecular mechanism remains unclear. Focusing on the final step of the protein-lipid conjugation reaction, the ATG8/LC3 lipidation, we show how the membrane association of the conjugation machinery is organized and fine-tuned at the atomistic level. Amphipathic α helices in ATG3 proteins (AHATG3) have low hydrophobicity and contain less bulky residues. Molecular dynamics simulations reveal that AHATG3 regulates the dynamics and accessibility of the thioester bond of the ATG3~LC3 conjugate to lipids, enabling the covalent lipidation of LC3. Live-cell imaging shows that the transient membrane association of ATG3 with autophagic membranes is governed by the less bulky-hydrophobic feature of AHATG3. The unique properties of AHATG3 facilitate protein-lipid bilayer association, leading to the remodeling of the lipid bilayer required for the formation of autophagosomes.


Subject(s)
Lipid Bilayers , Microtubule-Associated Proteins , Autophagy-Related Proteins/metabolism , Microtubule-Associated Proteins/metabolism , Protein Conformation, alpha-Helical , Cell Membrane/metabolism
10.
Hum Mol Genet ; 32(16): 2623-2637, 2023 08 07.
Article in English | MEDLINE | ID: mdl-37364041

ABSTRACT

ß-propellers that bind polyphosphoinositides (PROPPINs) are an autophagy-related protein family conserved throughout eukaryotes. The PROPPIN family includes Atg18, Atg21 and Hsv2 in yeast and WD-repeat protein interacting with phosphoinositides (WIPI)1-4 in mammals. Mutations in the WIPI genes are associated with human neuronal diseases, including ß-propeller associated neurodegeneration (BPAN) caused by mutations in WDR45 (encoding WIPI4). In contrast to yeast PROPPINs, the functions of mammalian WIPI1-WIPI4 have not been systematically investigated. Although the involvement of WIPI2 in autophagy has been clearly shown, the functions of WIPI1, WIPI3 and WIPI4 in autophagy remain poorly understood. In this study, we comprehensively analyzed the roles of WIPI proteins by using WIPI-knockout (single, double and quadruple knockout) HEK293T cells and recently developed HaloTag-based reporters, which enable us to monitor autophagic flux sensitively and quantitatively. We found that WIPI2 was nearly essential for autophagy. Autophagic flux was unaffected or only slightly reduced by single deletion of WIPI3 (encoded by WDR45B) or WIPI4 but was profoundly reduced by double deletion of WIPI3 and WIPI4. Furthermore, we revealed variable effects of BPAN-related missense mutations on the autophagic activity of WIPI4. BPAN is characterized by neurodevelopmental and neurodegenerative abnormalities, and we found a possible association between the magnitude of the defect of the autophagic activity of WIPI4 mutants and the severity of neurodevelopmental symptoms. However, some of the BPAN-related missense mutations, which produce neurodegenerative signs, showed almost normal autophagic activity, suggesting that non-autophagic functions of WIPI4 may be related to neurodegeneration in BPAN.


Subject(s)
Phosphatidylinositol Phosphates , Saccharomyces cerevisiae , Animals , Humans , Saccharomyces cerevisiae/metabolism , HEK293 Cells , Phosphatidylinositol Phosphates/metabolism , Autophagy-Related Proteins/genetics , Autophagy-Related Proteins/metabolism , Autophagy/genetics , Mammals/metabolism , Carrier Proteins/genetics , Carrier Proteins/metabolism
11.
Autophagy Rep ; 2(1)2023.
Article in English | MEDLINE | ID: mdl-37034386

ABSTRACT

Autophagy is a catabolic self-degradative pathway that promotes the degradation and recycling of intracellular material through the lysosomal compartment. Although first believed to function in conditions of nutritional stress, autophagy is emerging as a critical cellular pathway, involved in a variety of physiological and pathophysiological processes. Autophagy dysregulation is associated with an increasing number of diseases, including ocular diseases. On one hand, mutations in autophagy-related genes have been linked to cataracts, glaucoma, and corneal dystrophy; on the other hand, alterations in autophagy and lysosomal pathways are a common finding in essentially all diseases of the eye. Moreover, LC3-associated phagocytosis, a form of non-canonical autophagy, is critical in promoting visual cycle function. This review collects the latest understanding of autophagy in the context of the eye. We will review and discuss the respective roles of autophagy in the physiology and/or pathophysiology of each of the ocular tissues, its diurnal/circadian variation, as well as its involvement in diseases of the eye.

12.
Cell Struct Funct ; 48(1): 99-112, 2023 May 11.
Article in English | MEDLINE | ID: mdl-37019684

ABSTRACT

Protein-lipid conjugation is a widespread modification involved in many biological processes. Various lipids, including fatty acids, isoprenoids, sterols, glycosylphosphatidylinositol, sphingolipids, and phospholipids, are covalently linked with proteins. These modifications direct proteins to intracellular membranes through the hydrophobic nature of lipids. Some of these membrane-binding processes are reversible through delipidation or by reducing the affinity to membranes. Many signaling molecules undergo lipid modification, and their membrane binding is important for proper signal transduction. The conjugation of proteins to lipids also influences the dynamics and function of organellar membranes. Dysregulation of lipidation has been associated with diseases such as neurodegenerative diseases. In this review, we first provide an overview of diverse forms of protein-lipid conjugation and then summarize the catalytic mechanisms, regulation, and roles of these modifications.Key words: lipid, lipidation, membrane, organelle, protein modification.


Subject(s)
Fatty Acids , Proteins , Fatty Acids/metabolism , Phospholipids/metabolism , Lipid Metabolism , Sterols/metabolism , Cell Membrane/metabolism
13.
Trends Cell Biol ; 33(11): 991-1003, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37120410

ABSTRACT

The covalent attachment of ubiquitin is a common regulatory mechanism in various proteins. Although it has long been thought that the substrates of ubiquitination are limited to proteins, recent studies have changed this view: ubiquitin can be conjugated to lipids, sugars, and nucleotides. Ubiquitin is linked to these substrates by the action of different classes of ubiquitin ligases that have distinct catalytic mechanisms. Ubiquitination of non-protein substrates likely serves as a signal for the recruitment of other proteins to bring about specific effects. These discoveries have expanded the concept of ubiquitination and have advanced our insight into the biology and chemistry of this well-established modification process. In this review we describe the molecular mechanisms and roles of non-protein ubiquitination and discuss the current limitations.

14.
J Biol Chem ; 299(3): 102973, 2023 03.
Article in English | MEDLINE | ID: mdl-36738789

ABSTRACT

Although cell size regulation is crucial for cellular functions in a variety of organisms from bacteria to humans, the underlying mechanisms remain elusive. Here, we identify Rim21, a component of the pH-sensing Rim101 pathway, as a positive regulator of cell size through a flow cytometry-based genome-wide screen of Saccharomyces cerevisiae deletion mutants. We found that mutants defective in the Rim101 pathway were consistently smaller than wildtype cells in the log and stationary phases. We show that the expression of the active form of Rim101 increased the size of wildtype cells. Furthermore, the size of wildtype cells increased in response to external alkalization. Microscopic observation revealed that this cell size increase was associated with changes in both vacuolar and cytoplasmic volume. We also found that these volume changes were dependent on Rim21 and Rim101. In addition, a mutant lacking Vph1, a component of V-ATPase that is transcriptionally regulated by Rim101, was also smaller than wildtype cells, with no increase in size in response to alkalization. We demonstrate that the loss of Vph1 suppressed the Rim101-induced increase in cell size under physiological pH conditions. Taken together, our results suggest that the cell size of budding yeast is regulated by the Rim101-V-ATPase axis under physiological conditions as well as in response to alkaline stresses.


Subject(s)
Repressor Proteins , Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Hydrogen-Ion Concentration , Repressor Proteins/metabolism , Saccharomyces cerevisiae/cytology , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Vacuolar Proton-Translocating ATPases/metabolism , Sequence Deletion
15.
Mol Biol Cell ; 34(4): ar29, 2023 04 01.
Article in English | MEDLINE | ID: mdl-36735498

ABSTRACT

The endoplasmic reticulum (ER) is a major cell compartment where protein synthesis, folding, and posttranslational modifications occur with assistance from a wide variety of chaperones and enzymes. Quality control systems selectively eliminate abnormal proteins that accumulate inside the ER due to cellular stresses. ER-phagy, that is, selective autophagy of the ER, is a mechanism that maintains or reestablishes cellular and ER-specific homeostasis through removal of abnormal proteins. However, how ER luminal proteins are recognized by the ER-phagy machinery remains unclear. Here, we applied the aggregation-prone protein, six-repeated islet amyloid polypeptide (6xIAPP), as a model ER-phagy substrate and found that cell cycle progression 1 (CCPG1), which is an ER-phagy receptor, efficiently mediates its degradation via ER-phagy. We also identified prolyl 3-hydroxylase family member 4 (P3H4) as an endogenous cargo of CCPG1-dependent ER-phagy. The ER luminal region of CCPG1 contains several highly conserved regions that we refer to as cargo-interacting regions (CIRs); these interact directly with specific luminal cargos for ER-phagy. Notably, 6xIAPP and P3H4 interact directly with different CIRs. These findings indicate that CCPG1 is a bispecific ER-phagy receptor for ER luminal proteins and the autophagosomal membrane that contributes to the efficient removal of aberrant ER-resident proteins through ER-phagy.


Subject(s)
Autophagy , Endoplasmic Reticulum Stress , Carrier Proteins/metabolism , Endoplasmic Reticulum/metabolism , Homeostasis , Proteins/metabolism , Cell Cycle Proteins/metabolism
16.
Nat Rev Genet ; 24(6): 382-400, 2023 06.
Article in English | MEDLINE | ID: mdl-36635405

ABSTRACT

Macroautophagy and microautophagy are highly conserved eukaryotic cellular processes that degrade cytoplasmic material in lysosomes. Both pathways involve characteristic membrane dynamics regulated by autophagy-related proteins and other molecules, some of which are shared between the two pathways. Over the past few years, the application of new technologies, such as cryo-electron microscopy, coevolution-based structural prediction and in vitro reconstitution, has revealed the functions of individual autophagy gene products, especially in autophagy induction, membrane reorganization and cargo recognition. Concomitantly, mutations in autophagy genes have been linked to human disorders, particularly neurodegenerative diseases, emphasizing the potential pathogenic implications of autophagy defects. Accumulating genome data have also illuminated the evolution of autophagy genes within eukaryotes as well as their transition from possible ancestral elements in prokaryotes.


Subject(s)
Autophagy , Lysosomes , Humans , Cryoelectron Microscopy , Autophagy/genetics , Lysosomes/metabolism , Proteins/metabolism , Eukaryota , Biology
17.
Autophagy ; 19(1): 1-2, 2023 01.
Article in English | MEDLINE | ID: mdl-36448729

ABSTRACT

In this issue, we answer a frequently asked question regarding the evolution of the macroautophagy/autophagy pathway.


Subject(s)
Autophagy
18.
STAR Protoc ; 4(1): 101935, 2023 03 17.
Article in English | MEDLINE | ID: mdl-36520633

ABSTRACT

Ubiquitin is covalently conjugated to phospholipids as well as proteins; however, ubiquitinated phospholipids are less abundant than free ubiquitin and ubiquitinated proteins. Here, we describe protocols to purify ubiquitinated phospholipids in budding yeast and human cells based on their hydrophobicity. Ubiquitinated phospholipids are purified by Triton X-114 phase partitioning and affinity purification and verified by phospholipase D treatment. These protocols enable the detection of tagged as well as endogenous mono- and poly-ubiquitinated phospholipids by immunoblotting. For complete details on the use and execution of this protocol, please refer to Sakamaki et al..1.


Subject(s)
Saccharomycetales , Humans , Saccharomycetales/metabolism , Ubiquitin/metabolism , Proteins , Immunoblotting , Cell Line
19.
Autophagy ; 19(4): 1361-1362, 2023 04.
Article in English | MEDLINE | ID: mdl-36095076

ABSTRACT

Conjugation of Atg8-family proteins to phosphatidylethanolamine (PE) is important for autophagosome formation. PE conjugation has been thought to be specific to Atg8 among the ubiquitin-family proteins. However, this dogma has not been experimentally verified. Our recent study revealed that ubiquitin is also conjugated to PE on endosomes and the vacuole (or lysosomes). Other ubiquitin-like proteins, such as NEDD8 and ISG15, also covalently bind to phospholipids. We propose that conjugation to phospholipids could be a common feature of the ubiquitin family.


Subject(s)
Phospholipids , Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae Proteins/metabolism , Autophagy , Autophagy-Related Protein 8 Family , Ubiquitins , Ubiquitin/metabolism , Microtubule-Associated Proteins/metabolism , Autophagy-Related Proteins
20.
Autophagy ; 19(4): 1363-1364, 2023 04.
Article in English | MEDLINE | ID: mdl-36095089

ABSTRACT

Monitoring mammalian macroautophagic/autophagic flux is necessary in most autophagy studies but has generally been difficult to do. Here, we discuss our recent report of a HaloTag-based processing method that offers a straightforward readout for autophagic flux. We found that the self-labeling protein HaloTag becomes resistant to proteolysis when labeled with its ligand. Fusing HaloTag to an autophagy protein such as LC3 results in a reporter that is completely degraded when delivered into lysosomes but, when pulse-labeled with HaloTag ligand, releases free HaloTagligand when processed by lysosomal enzymes. The quantifiable amount of free HaloTagligand, observed by immunoblotting or in-gel fluorescence detection, reflects autophagic flux. Besides being compatible with fluorescence microscopy and flow cytometry applications, this quantitative assay can be readily adapted to monitor most autophagy pathways or the autophagic degradation of a protein of interest.


Subject(s)
Autophagy , Microtubule-Associated Proteins , Animals , Microtubule-Associated Proteins/metabolism , Ligands , Hydrolases/metabolism , Lysosomes/metabolism , Mammals/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...