Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Front Neuroanat ; 13: 70, 2019.
Article in English | MEDLINE | ID: mdl-31379518

ABSTRACT

The anatomical organization of distinct regions in the insect brain often reflects their functions. In the present study, the brain structure of Apolygus lucorum was examined by using immunolabeling and three-dimensional reconstruction. The results revealed the location and volume of prominent neuropils, such as the antennal lobes (AL), optic lobes (OL), anterior optic tubercles (AOTU), central body (CB), lateral accessory lobes (LAL), mushroom lobes, and distinct tritocerebral neuropils. As expected, this brain is similar to that of other insects. One exception, however, is that the antennal lobes were found to be the most prominent neuropils. Their size relative to the entire brain is the largest among all insect species studied so far. In contrast, the calyx, a region getting direct input from the antennal lobe, has a smaller size relative to the brain than that of other species. These findings may suggest that olfaction plays an essential role for A. lucorum.

2.
Front Cell Neurosci ; 11: 370, 2017.
Article in English | MEDLINE | ID: mdl-29209176

ABSTRACT

The oriental armyworm, Mythimna separata (Walker), is a polyphagous, migratory pest relying on olfactory cues to find mates, locate nectar, and guide long-distance flight behavior. In the present study, a combination of neuroanatomical techniques were utilized on this species, including backfills, confocal microscopy, and three-dimensional reconstructions, to trace the central projections of sensory neurons from the antenna and the labial pit organ, respectively. As previously shown, the axons of the labial sensory neurons project via the ipsilateral labial nerve and terminate in three main areas of the central nervous system: (1) the labial-palp pit organ glomerulus of each antennal lobe, (2) the gnathal ganglion, and (3) the prothoracic ganglion of the ventral nerve cord. Similarly, the antennal sensory axons project to multiple areas of the central nervous system. The ipsilateral antennal nerve targets mainly the antennal lobe, the antennal mechanosensory and motor center, and the prothoracic and mesothoracic ganglia. Specific staining experiments including dye application to each of the three antennal segments indicate that the antennal lobe receives input from flagellar olfactory neurons exclusively, while the antennal mechanosensory and motor center is innervated by mechanosensory neurons from the whole antenna, comprising the flagellum, pedicle, and scape. The terminals in the mechanosensory and motor center are organized in segregated zones relating to the origin of neurons. The flagellar mechanosensory axons target anterior zones, while the pedicular and scapal axons terminate in posterior zones. In the ventral nerve cord, the processes from the antennal sensory neurons terminate in the motor area of the thoracic ganglia, suggesting a close connection with motor neurons. Taken together, the numerous neuropils innervated by axons both from the antenna and labial palp indicate the multiple roles these sensory organs serve in insect behavior.

3.
Sci Rep ; 6: 35204, 2016 10 11.
Article in English | MEDLINE | ID: mdl-27725758

ABSTRACT

By using immunostaining and three-dimensional reconstruction, the anatomical organization of the antennal lobe glomeruli of the female cotton bollworm Helicoverpa armigera was investigated. Eighty-one glomeruli were identified, 15 of which were not previously discovered. The general anatomical organization of the AL of female is similar to that of male and all glomeruli were classified into four sub-groups, including the female-specific glomerular complex, posterior complex, labial-palp pit organ glomerulus, and ordinary glomeruli. A global-wide comparison on the complete glomerular map of female and male was performed and for the first time the quantitative difference in volume for each individual homologous glomerulus was analyzed. We found that the sexual dimorphism includes not only the sex-specific glomeruli but also some of the other glomeruli. The findings in the present study may provide a reference to examine the antennal-lobe organization more in detail and to identify new glomeruli in other moth species. In addition, the complete identification and global-wide comparison of the sexes provide an important basis for mapping the function of distinct glomeruli and for understanding neural mechanisms underlying sexually dimorphic olfactory behaviors.


Subject(s)
Arthropod Antennae/physiology , Moths/physiology , Olfactory Pathways/physiology , Animals , Female , Male , Sex Characteristics
4.
PLoS One ; 11(8): e0160161, 2016.
Article in English | MEDLINE | ID: mdl-27478892

ABSTRACT

The mirid bug Apolygus lucorum (Meyer-Dür), a polyphagous pest, is dependent on olfactory cues to locate various host plant species and mates. In this study, we traced the projection pathway of the antennal sensory neurons and visualized their projection patterns in the central nervous system of A. lucorum through confocal microscopy and digital reconstructions. We also examined the glomerular organization of the primary olfactory center of the brain, the antennal lobe, and created a three-dimensional model of the glomeruli. We found that the axons of the sensory neurons project into the brain via the ipsilateral antennal nerve, and descend further into the gnathal ganglion, prothoracic ganglion, mesothoracic ganglion, and metathoracic ganglion, and reach as far as to the abdominal ganglion. Such a projection pattern indicates that antennal sensory neurons of A. lucorum may be potentially directly connected to motor neurons. The antennal lobe, however, is the major target area of antennal sensory neurons. The antennal lobe is composed of a large number of glomeruli, i.e. 70-80 glomeruli in one AL of A. lucorum. The results of this study which provide information about the basic anatomical arrangement of the brain olfactory center of A. lucorum, are important for further investigations of chemosensory encoding mechanisms of the mirid bug.


Subject(s)
Heteroptera/anatomy & histology , Animals , Arthropod Antennae/anatomy & histology , Arthropod Antennae/physiology , Axons/metabolism , Central Nervous System/anatomy & histology , Central Nervous System/physiology , Female , Imaging, Three-Dimensional , Immunohistochemistry , Male , Microscopy, Confocal , Olfactory Pathways/physiology , Sensory Receptor Cells/physiology
5.
Org Lett ; 16(7): 2014-7, 2014 Apr 04.
Article in English | MEDLINE | ID: mdl-24650095

ABSTRACT

A series of tenofovir analogues with potential antiviral and immunobiologically active compounds were synthesized through an asymmetric transfer hydrogenation reaction from achiral purine derivatives. Up to 97% ee and good to excellent yields were achieved under mild conditions through short reaction steps. The present report suggests an efficient process to acquire tenofovir and its analogues.


Subject(s)
Adenine/analogs & derivatives , Antiviral Agents/chemical synthesis , Organophosphonates/chemical synthesis , Adenine/chemical synthesis , Adenine/chemistry , Adenine/pharmacology , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Catalysis , Combinatorial Chemistry Techniques , Hydrogenation , Molecular Structure , Organophosphonates/chemistry , Organophosphonates/pharmacology , Tenofovir
SELECTION OF CITATIONS
SEARCH DETAIL
...