Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Stud Health Technol Inform ; 308: 42-47, 2023 Nov 23.
Article in English | MEDLINE | ID: mdl-38007723

ABSTRACT

Insomnia is one of the most common sleep-related diseases. In traditional Chinese medicine, Flos daturae has been used as a traditional herbal totreatment of sizens of diseases. The research objective was to investigate the sedative and hypnotic effects of Flos Daturae. Kunming mice were divided into control group, Estazolam (positive drug, 0.0005 g/kg) group and Flos Daturae groups (0.01, 0.02, 0.04g/kg) with random, ig once a day for 7 days. The central sedative effect of flos Daturae on the spontaneous activity of mice was observed using the locomotive activity test, and the hypnotic effect of Flos Daturae was observed in mice using the direct sleep test and the sleep latency with synergistic supra-and sub-threshold doses of pentobarbital sodium. Flos Daturae (0.04g/kg) significantly inhibited mice locomotive activity (P<0.05) and had no direct sleeping effect (P>0.05), increased the number rate of sleep (P<0.05), and significantly shortening sleep latency (P<0.05), enhanced pentobarbital sodium-induced sleep. Flos Daturae possesses have sedative-hypnotic properties.


Subject(s)
Hypnotics and Sedatives , Sleep Initiation and Maintenance Disorders , Mice , Animals , Hypnotics and Sedatives/pharmacology , Pentobarbital/pharmacology , Sleep Initiation and Maintenance Disorders/drug therapy , Sleep
2.
Front Psychiatry ; 11: 750, 2020.
Article in English | MEDLINE | ID: mdl-32848928

ABSTRACT

Heroin and methamphetamine are both popular illicit drugs in China. Previous clinical data showed that habitual users of either heroin or methamphetamine abuse the other drug for substitution in case of unavailability of their preferred drug. The present study aimed to observe whether heroin can substitute the methamphetamine reinforcement effect in rats, and vice versa. Rats were trained to self-administer heroin or methamphetamine (both 50 µg/kg/infusion) under an FR1 reinforcing schedule for 10 days. After having extracted the dose-effect curve of the two drugs, we administered methamphetamine at different doses (12.5-200 µg/kg/infusion) to replace heroin during the period of self-administration, and vice versa. The heroin dose-effect curve showed an inverted U-shaped trend, and the total intake dose of heroin significantly increased when the training dose increased from 50 to 100 or 200 µg/kg/infusion. Following replacement with methamphetamine, the total dose-effect curve shifted leftwards and upwards. By contrast, although the dose-effect curve of methamphetamine also showed an inverted U-shaped trend, the total dose of methamphetamine significantly decreased when the training dose decreased from 50 to 25 µg/kg/infusion; conversely, when the methamphetamine training dose increased, the total dose did not change significantly. The total dose-effect curve shifted rightwards after heroin was substituted with methamphetamine. Although heroin and methamphetamine had their own independent reward effects, low doses of methamphetamine can replace the heroin reward effect, while high doses of heroin can replace the methamphetamine reward effect. These results demonstrated that heroin and methamphetamine can substitute each other in terms of reinforcement effects in rats.

3.
Purinergic Signal ; 12(1): 79-87, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26531254

ABSTRACT

There are divergences between neuropathic pain and visceralgia in terms of the duration, location, and character of hyperalgesia. It is generally recognized that nociceptive receptors, including P2X receptors, may play different roles in nociceptive mechanisms. The different roles of P2X1-7 receptors have not been fully understood both in neuropathic pain and visceral hyperalgesia. In order to explore the different expressions of P2X1-7 receptors in these two hyperalgesia models, the lumbosacral dorsal root ganglion (DRG) neurons from rat sciatic nerve chronic constriction injury (CCI) model and neonatal colorectal distention (NCRD) model were studied (both the primary nociceptive neuron afferents of those two models projected to the same segment of spinal cord). Both immunohistochemistry (IHC) technique and real-time fluorescence quantitative polymerase chain reaction (RT-PCR) technology were applied to analyze the protein expression levels and nucleic acid of P2X1-7 receptors. We found that except P2X2 and P2X3, the expression levels of P2X1 and P2X5 receptors increased in neuropathic pain while those expression levels of P2X4, P2X6, and P2X7 receptors increased in visceral pain. Our results also suggested that in addition to P2X2/3 heteromeric, other P2X subunits may also involved in generation heteromeric such as P2X1/5 and/or P2X2/5 in neuropathic pain and P2X4/6 and/or P2X4/7 in visceral pain.


Subject(s)
Adenosine Triphosphate/metabolism , Ganglia, Spinal/physiopathology , Neuralgia/physiopathology , Receptors, Purinergic P2X/biosynthesis , Visceral Pain/physiopathology , Animals , Animals, Newborn , Behavior, Animal/drug effects , Chronic Disease , Female , Ganglia, Spinal/metabolism , Male , Neuralgia/metabolism , Neuralgia/psychology , Pregnancy , Rats , Rats, Sprague-Dawley , Sciatic Neuropathy/metabolism , Sciatic Neuropathy/physiopathology , Visceral Pain/metabolism , Visceral Pain/psychology
4.
Int J Oncol ; 46(2): 833-40, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25420507

ABSTRACT

Accumulating evidence has proved that potassium channels (K+ channels) are involved in regulating cell proliferation, cell cycle progression and apoptosis of tumor cells. However, the precise cellular mechanisms are still unknown. In the present study, we investigated the effect and mechanisms of quinidine, a commonly used voltage-gated K+ channel blocker, on cell proliferation and apoptosis of human glioma U87-MG cells. We found that quinidine significantly inhibited the proliferation of U87-MG cells and induced apoptosis in a dose-dependent manner. The results of caspase colorimetric assay showed that the mitochondrial pathway was the main mode involved in the quinidine-induced apoptotic process. Furthermore, the concentration range of quinidine, which inhibited voltage-gated K+ channel currents in electrophysiological assay, was consistent with that of quinidine inhibiting cell proliferation and inducing cell apoptosis. In U87-MG cells treated with quinidine (100 µmol/l), 11 of 2,042 human microRNAs (miRNAs) were upregulated and 16 were downregulated as detected with the miRNA array analysis. The upregulation of miR-149-3p and downregulation of miR-424-5p by quinidine treatment were further verified by using quantitative real-time PCR. In addition, using miRNA target prediction program, putative target genes related to cell proliferation and apoptosis for two differentially expressed miRNAs were predicted. Taken together, these data suggested that the anti-proliferative and pro-apoptosis effect of voltage-gated K+ channel blocker quinidine in human glioma cells was mediated at least partly through regulating expression of miRNAs, and provided further support for the mechanisms of voltage-gated K+ channels in mediating cell proliferation and apoptosis.


Subject(s)
Apoptosis/genetics , Glioma/drug therapy , Glioma/genetics , MicroRNAs/biosynthesis , Quinidine/administration & dosage , Apoptosis/drug effects , Cell Cycle/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Gene Expression Regulation, Neoplastic , Glioma/pathology , Humans , MicroRNAs/genetics , Potassium Channel Blockers/administration & dosage , Potassium Channels, Voltage-Gated/antagonists & inhibitors , Potassium Channels, Voltage-Gated/metabolism , RNA, Messenger/biosynthesis
SELECTION OF CITATIONS
SEARCH DETAIL
...