Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
J Virol ; 98(3): e0192323, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38358289

ABSTRACT

Helicobacter pylori is a human pathogen that infects almost half of the population. Antibiotic resistance in H. pylori threatens health and increases the demand for prophylactic and therapeutic vaccines. Traditional oral vaccine research faces considerable challenges because of the epithelial barrier, potential enterotoxicity of adjuvants, and the challenging conditions of the gastric environment. We developed an intranasal influenza A virus (IAV) vector vaccine based on two live attenuated influenza viruses with modified acidic polymerase protein (PA) genes encoding the A subunit of H. pylori neutrophil-activating protein (NapA), named IAV-NapA, including influenza virus A/WSN/33 (WSN)-NapA and A/Puerto Rico/8/34 (PR8)-NapA. These recombinant influenza viruses were highly attenuated and exhibited strong immunogenicity in mice. Vaccination with IAV-NapA induced antigen-specific humoral and mucosal immune responses while stimulating robust Th1 and Th17 cell immune responses in mice. Our findings suggest that prophylactic and therapeutic vaccination with influenza virus vector vaccines significantly reduces colonization of H. pylori and inflammation in the stomach of mice.IMPORTANCEHelicobacter pylori is the most common cause of chronic gastritis and leads to severe gastroduodenal pathology in some patients. Many studies have shown that Th1 and Th17 cellular and gastric mucosal immune responses are critical in reducing H. pylori load. IAV vector vaccines can stimulate these immune responses while overcoming potential adjuvant toxicity and antigen dosing issues. To date, no studies have demonstrated the role of live attenuated IAV vector vaccines in preventing and treating H. pylori infection. Our work indicates that vaccination with IAV-NapA induces antigen-specific humoral, cellular, and mucosal immunity, producing a protective and therapeutic effect against H. pylori infection in BALB/c mice. This undescribed H. pylori vaccination approach may provide valuable information for developing vaccines against H. pylori infection.


Subject(s)
Helicobacter pylori , Influenza Vaccines , Animals , Humans , Mice , Adjuvants, Immunologic , Bacterial Vaccines/immunology , Helicobacter pylori/physiology , Influenza A virus/physiology , Influenza Vaccines/administration & dosage , Mice, Inbred BALB C , Helicobacter Infections/prevention & control , Administration, Intranasal
2.
Front Immunol ; 14: 1289795, 2023.
Article in English | MEDLINE | ID: mdl-38264642

ABSTRACT

Tumor-associated macrophages (TAMs) are critical in the tumor microenvironment (TME) of hepatocellular carcinoma (HCC). Major vault protein (MVP) mediates multidrug resistance, cell growth and development, and viral immunity. However, the relationship between MVP and TAMs polarization has not been clarified in HCC. We found that MVP significantly increased M2-TAMs infiltration levels in tumor tissues of HCC patients. MVP promoted HCC proliferation, metastasis, and invasion by regulating M2 polarization in vivo and in vitro. Mechanistically, MVP associated with signal transducer and activator of transcription 6 (STAT6) and enhanced STAT6 phosphorylation. STAT6 translocated from the cytosol to the nucleus and regulated M2 macrophage-associated gene transcription. These findings suggest that MVP modulates the macrophage M2 transcriptional program, revealing its potential role in the TAMs of TME.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , STAT6 Transcription Factor , Vault Ribonucleoprotein Particles , Humans , STAT6 Transcription Factor/metabolism , Tumor Microenvironment , Tumor-Associated Macrophages , Vault Ribonucleoprotein Particles/metabolism
3.
Front Immunol ; 12: 618196, 2021.
Article in English | MEDLINE | ID: mdl-33717111

ABSTRACT

Chronic hepatitis B is a major health problem worldwide, with more than 250 million chronic carriers. Hepatitis B virus interferes with the host innate immune system so as to evade elimination via almost all of its constituent proteins; nevertheless, the function of HBsAg with respect to immune escape remains unclear. This study aimed to determine the role HBsAg plays in assisting HBV to escape from immune responses. We found that HBsAg suppressed the activation of the nuclear factor kappa B (NF-кB) pathway, leading to downregulation of innate immune responses. HBsAg interacted with TAK1 and TAB2 specifically, inhibiting the phosphorylation and polyubiquitination of TAK1 and the K63-linked polyubiquitination of TAB2. Autophagy is a major catabolic process participating in many cellular processes, including the life cycle of HBV. We found that HBsAg promoted the autophagic degradation of TAK1 and TAB2 via the formation of complexes with TAK1 and TAB2, resulting in suppression of the NF-κB pathway. The expression of TAK1, TAB2, and the translocation of NF-κB inversely correlated with HBsAg levels in clinical liver tissues. Taken together, our findings suggest a novel mechanism by which HBsAg interacts with TAK1-TAB2 complex and suppresses the activation of NF-κB signaling pathway via reduction of the post-translational modifications and autophagic degradation.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Hepatitis B Surface Antigens/immunology , Host-Pathogen Interactions , MAP Kinase Kinase Kinases/metabolism , Multiprotein Complexes/metabolism , NF-kappa B/metabolism , Signal Transduction , Autophagy , Cell Line , Hepatitis B/immunology , Hepatitis B/metabolism , Hepatitis B/virology , Hepatitis B Surface Antigens/metabolism , Hepatitis B virus/physiology , Host-Pathogen Interactions/immunology , Humans , Immunity, Innate , Immunomodulation , Phosphorylation , Protein Binding , Ubiquitination
SELECTION OF CITATIONS
SEARCH DETAIL
...