Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Molecules ; 28(8)2023 Apr 14.
Article in English | MEDLINE | ID: mdl-37110692

ABSTRACT

Silicon-based composites are promising candidates as the next-generation anode materials for high-performance lithium-ion batteries (LIBs) due to their high theoretical specific capacity, abundant reserves, and reliable security. However, expensive raw materials and complicated preparation processes give silicon carbon anode a high price and poor batch stability, which become a stumbling block to its large-scale practical application. In this work, a novel ball milling-catalytic pyrolysis method is developed to fabricate a silicon nanosheet@amorphous carbon/N-doped graphene (Si-NSs@C/NG) composite with cheap high-purity micron-size silica powder and melamine as raw materials. Through systematic characterizations such as XRD, Raman, SEM, TEM and XPS, the formation process of NG and a Si-NSs@C/NG composite is graphically demonstrated. Si-NSs@C is uniformly intercalated between NG nanosheets, and these two kinds of two-dimensional (2D) materials are combined in a surface-to-surface manner, which immensely buffers the stress changes caused by volume expansion and contraction of Si-NSs. Attributed to the excellent electrical conductivity of graphene layer and the coating layer, the initial reversible specific capacity of Si-NSs@C/NG is 807.9 mAh g-1 at 200 mA g-1, with a capacity retention rate of 81% in 120 cycles, exhibiting great potential for application as an anode material for LIBs. More importantly, the simple and effective process and cheap precursors could greatly reduce the production cost and promote the commercialization of silicon/carbon composites.

2.
Nat Chem ; 11(12): 1158-1166, 2019 12.
Article in English | MEDLINE | ID: mdl-31636393

ABSTRACT

Continued development of the Sonogashira coupling has made it a well established and versatile reaction for the straightforward formation of C-C bonds, forging the carbon skeletons of broadly useful functionalized molecules. However, asymmetric Sonogashira coupling, particularly for C(sp3)-C(sp) bond formation, has remained largely unexplored. Here we demonstrate a general stereoconvergent Sonogashira C(sp3)-C(sp) cross-coupling of a broad range of terminal alkynes and racemic alkyl halides (>120 examples) that are enabled by copper-catalysed radical-involved alkynylation using a chiral cinchona alkaloid-based P,N-ligand. Industrially relevant acetylene and propyne are successfully incorporated, laying the foundation for scalable and economic synthetic applications. The potential utility of this method is demonstrated in the facile synthesis of stereoenriched bioactive or functional molecule derivatives, medicinal compounds and natural products that feature a range of chiral C(sp3)-C(sp/sp2/sp3) bonds. This work emphasizes the importance of radical species for developing enantioconvergent transformations.

3.
Sci Rep ; 7(1): 16640, 2017 11 30.
Article in English | MEDLINE | ID: mdl-29192158

ABSTRACT

A synthetic method for diversely substituted tetrahydropyrrolo[1,2-a]quinolines was developed via CuCl-catalyzed cascade transformation of internal aminoalkynes with alkynes under microwave- irradiation.

4.
Org Lett ; 16(3): 1000-3, 2014 Feb 07.
Article in English | MEDLINE | ID: mdl-24467612

ABSTRACT

A novel domino copper-catalyzed trifluoromethylated Meyer-Schuster rearrangement reaction with Togni's reagent was developed, leading to α-trifluormethyl (CF3) enone products with moderate to good yields. Furthermore, α-CF3 enones can be transformed toward important trifluoromethyl heterocyclic motifs in a one-pot version.


Subject(s)
Copper/chemistry , Heterocyclic Compounds/chemical synthesis , Hydrocarbons, Fluorinated/chemical synthesis , Alkylation , Catalysis , Heterocyclic Compounds/chemistry , Hydrocarbons, Fluorinated/chemistry , Molecular Structure , Stereoisomerism
5.
Chemistry ; 20(5): 1332-40, 2014 Jan 27.
Article in English | MEDLINE | ID: mdl-24458913

ABSTRACT

A mild, convenient, and step-economical intramolecular aminotrifluoromethylation of unactivated alkenes with a variety of electronically distinct, nitrogen-based nucleophiles in the presence of a simple copper salt catalyst, in the absence of extra ligands, is described. Many different nitrogen-based nucleophiles (e.g., basic primary aliphatic and aromatic amines, sulfonamides, carbamates, and ureas) can be employed in this new aminotrifluoromethylation reaction. The aminotrifluoromethylation process allows straightforward access to diversely substituted CF3-containing pyrrolidines or indolines, in good to excellent yields, through a direct difunctionalization strategy from the respective acyclic starting materials. Mechanistic studies were conducted and a plausible mechanism was proposed.


Subject(s)
Alkenes/chemistry , Copper/chemistry , Nitrogen/chemistry , Catalysis , Indoles/chemistry , Methylation , Pyrrolidines/chemistry , Sulfonamides/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...