Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 15(1): 1690, 2024 Feb 24.
Article in English | MEDLINE | ID: mdl-38402228

ABSTRACT

The incorporation of mechanically interlocked structures into polymer backbones has been shown to confer remarkable functionalities to materials. In this work, a [c2]daisy chain unit based on dibenzo-24-crown-8 is covalently embedded into the backbone of a polymer network, resulting in a synthetic material possessing remarkable shape-memory properties under thermal control. By decoupling the molecular structure into three control groups, we demonstrate the essential role of the [c2]daisy chain crosslinks in driving the shape memory function. The mechanically interlocked topology is found to be an essential element for the increase of glass transition temperature and consequent gain of shape memory function. The supramolecular host-guest interactions within the [c2]daisy chain topology not only ensure robust mechanical strength and good network stability of the polymer, but also impart the shape memory polymer with remarkable shape recovery properties and fatigue resistance ability. The incorporation of the [c2]daisy chain unit as a building block has the potential to lay the groundwork for the development of a wide range of shape-memory polymer materials.

2.
ACS Appl Mater Interfaces ; 15(21): 25201-25211, 2023 May 31.
Article in English | MEDLINE | ID: mdl-37014285

ABSTRACT

The dynamic control of circularly polarized luminescence (CPL) has far-reaching significance in optoelectronics, information storage, and data encryption. Herein, we reported the reversible inversion of CPL in a coassembly supramolecular system consisting of chiral molecules L4, which contain two positively charged viologen units, and achiral ionic surfactant sodium dodecyl sulfate (SDS) by introducing achiral sulforhodamine B (SRB) dye molecules. The chirality of CPL in the coassemblies can be efficiently regulated and inverted by simply adjusting the amount of SRB. A series of experimental characterization, including optical spectroscopy, electron microscope, 1H NMR, and X-ray scattering measurements, suggested that SRB could coassemble with L4/SDS to establish a new stable L4/SDS/SRB supramolecular structure through electrostatic interactions. Moreover, the negative-sign CPL could revert to the positive-sign CPL if titanium dioxide (TiO2) nanoparticles were used to decompose SRB molecules. The evolution of the CPL inversion process could be cycled at least 5 times without a significant decline in CPL signals when SRB was refueled to the system. Our results provide a facile approach to dynamically regulating the handedness of CPL in a multiple-component supramolecular system via achiral species.

3.
Front Chem ; 10: 1087610, 2022.
Article in English | MEDLINE | ID: mdl-36545215

ABSTRACT

Dynamic fluorophore 9,14-diphenyl-9,14-dihydrodibenzo[a,c]phenazine (DPAC) affords a new platform to produce diverse emission outputs. In this paper, a novel DPAC-containing crown ether macrocycle D-6 is synthesized and characterized. Host-guest interactions of D-6 with different ammonium guests produced a variety of fluorescence with hypsochromic shifts up to 130 nm, which are found to be affected by choice of solvent or guest and host/guest stoichiometry. Formation of supramolecular complexes were confirmed by UV-vis titration, 1H NMR and HRMS spectroscopy.

4.
Angew Chem Int Ed Engl ; 60(29): 16129-16138, 2021 07 12.
Article in English | MEDLINE | ID: mdl-33955650

ABSTRACT

Designing photo-responsive host-guest systems can provide versatile supramolecular tools for constructing smart systems and materials. We designed photo-responsive macrocyclic hosts, modulated by light-driven molecular rotary motors enabling switchable chiral guest recognition. The intramolecular cyclization of the two arms of a first-generation molecular motor with flexible oligoethylene glycol chains of different lengths resulted in crown-ether-like macrocycles with intrinsic motor function. The octaethylene glycol linkage enables the successful unidirectional rotation of molecular motors, simultaneously allowing the 1:1 host-guest interaction with ammonium salt guests. The binding affinity and stereoselectivity of the motorized macrocycle can be reversibly modulated, owing to the multi-state light-driven switching of geometry and helicity of the molecular motors. This approach provides an attractive strategy to construct stimuli-responsive host-guest systems and dynamic materials.

SELECTION OF CITATIONS
SEARCH DETAIL
...