Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Appl Opt ; 62(35): 9299-9306, 2023 Dec 10.
Article in English | MEDLINE | ID: mdl-38108701

ABSTRACT

We report a 2-µm all-fiber nonlinear pulse compressor based on a tapered Pb-silicate photonic crystal fiber (PCF), which is capable of achieving large compression with low pedestal energy. A tapered Pb-silicate photonic crystal fiber with increased nonlinear coefficients is proposed for achieving self-similar pulse compression (SSPC) at 2 µm. The dynamic evolution of the fundamental order soliton is numerically analyzed based on the designed tapered fiber. After pulse compression in a tapered fiber with a length of 2.2 m, an initial 1.76 ps pulse can be compressed to 88 fs, increasing the peak power from 4.4 to 86 W with a compression factor of 20 and a quality factor of 98%. The results reveal that exponential variation yields superior compression performance and provides a promising solution for generating high-power femtosecond pulses at 2 µm.

2.
J Pers Med ; 13(2)2023 Jan 31.
Article in English | MEDLINE | ID: mdl-36836505

ABSTRACT

Screening patients with precancerous lesions of gastric cancer (PLGC) is important for gastric cancer prevention. The accuracy and convenience of PLGC screening could be improved with the use of machine learning methodologies to uncover and integrate valuable characteristics of noninvasive medical images related to PLGC. In this study, we therefore focused on tongue images and for the first time constructed a tongue image-based PLGC screening deep learning model (AITongue). The AITongue model uncovered potential associations between tongue image characteristics and PLGC, and integrated canonical risk factors, including age, sex, and Hp infection. Five-fold cross validation analysis on an independent cohort of 1995 patients revealed the AITongue model could screen PLGC individuals with an AUC of 0.75, 10.3% higher than that of the model with only including canonical risk factors. Of note, we investigated the value of the AITongue model in predicting PLGC risk by establishing a prospective PLGC follow-up cohort, reaching an AUC of 0.71. In addition, we developed a smartphone-based app screening system to enhance the application convenience of the AITongue model in the natural population from high-risk areas of gastric cancer in China. Collectively, our study has demonstrated the value of tongue image characteristics in PLGC screening and risk prediction.

3.
Brief Bioinform ; 23(5)2022 09 20.
Article in English | MEDLINE | ID: mdl-35551347

ABSTRACT

Understanding the biological functions of molecules in specific human tissues or cell types is crucial for gaining insights into human physiology and disease. To address this issue, it is essential to systematically uncover associations among multilevel elements consisting of disease phenotypes, tissues, cell types and molecules, which could pose a challenge because of their heterogeneity and incompleteness. To address this challenge, we describe a new methodological framework, called Graph Local InfoMax (GLIM), based on a human multilevel network (HMLN) that we established by introducing multiple tissues and cell types on top of molecular networks. GLIM can systematically mine the potential relationships between multilevel elements by embedding the features of the HMLN through contrastive learning. Our simulation results demonstrated that GLIM consistently outperforms other state-of-the-art algorithms in disease gene prediction. Moreover, GLIM was also successfully used to infer cell markers and rewire intercellular and molecular interactions in the context of specific tissues or diseases. As a typical case, the tissue-cell-molecule network underlying gastritis and gastric cancer was first uncovered by GLIM, providing systematic insights into the mechanism underlying the occurrence and development of gastric cancer. Overall, our constructed methodological framework has the potential to systematically uncover complex disease mechanisms and mine high-quality relationships among phenotypical, tissue, cellular and molecular elements.


Subject(s)
Computational Biology , Stomach Neoplasms , Algorithms , Computational Biology/methods , Computer Simulation , Humans
4.
Sensors (Basel) ; 19(1)2018 Dec 27.
Article in English | MEDLINE | ID: mdl-30591681

ABSTRACT

Unmanned aerial vehicle borne frequency modulated continuous wave synthetic aperture radars are attracting more and more attention due to their low cost and flexible operation capacity, including the ability to capture images at different elevation angles for precise target identification. However, small unmanned aerial vehicles suffer from large trajectory deviation and severe range-azimuth coupling due to their simple navigational control and susceptibility to air turbulence. In this paper, we utilize the squint minimization technique to reduce this coupling while simultaneously eliminating intra-pulse motion-induced effects with an additional spectrum scaling. After which, the modified range doppler algorithm is derived for second order range compression and block-wise range cell migration correction. Raw data-based motion compensation is carried out with a doppler tracker. Squinted azimuth dependent phase gradient algorithm is employed to deal with azimuth dependent parameters and inexact deramping, with minimum entropy-based autofocusing algorithms. Finally, azimuth nonlinear chirp scaling is used for azimuth compression. Simulation and real data experiment results presented verify the effectiveness of the above signal processing approach.

5.
IEEE Trans Image Process ; 23(5): 2168-83, 2014 May.
Article in English | MEDLINE | ID: mdl-24818240

ABSTRACT

In inverse synthetic aperture radar (ISAR) imaging, a target is usually regarded as consist of a few strong (specular) scatterers and the distribution of these strong scatterers is sparse in the imaging volume. In this paper, we propose to incorporate the sparse signal recovery method in 3D multiple-input multiple-output radar imaging algorithm. Sequential order one negative exponential (SOONE) function, which forms homotopy between 1 and 0 norms, is proposed to measure the sparsity. Gradient projection is used to solve a constrained nonconvex SOONE function minimization problem and recover the sparse signal. However, while the gradient projection method is computationally simple, it is not robust when a matrix in the algorithm is ill conditioned. We thus further propose using diagonal loading and singular value decomposition methods to improve the robustness of the algorithm. In order to handle targets with large flat surfaces, a combined amplitude and total-variation objective function is also proposed to regularize the shapes of the flat surfaces. Simulation results show that the proposed gradient projection of SOONE function method is better than orthogonal matching pursuit, CoSaMp, l1-magic, Bayesian method with Laplace prior, smoothed l0 method, and l1-ls in high SNR cases for recovery of ± 1 random spikes sparse signal. The quality of the simulated 3D images and real data ISAR images obtained using the new method is better than that of the conventional correlation method and minimum l2 norm method, and competitive to the aforementioned sparse signal recovery algorithms.

6.
IEEE Trans Image Process ; 19(8): 2127-42, 2010 Aug.
Article in English | MEDLINE | ID: mdl-20236885

ABSTRACT

Large 2-D sparse array provides high angular resolution microwave images but artifacts are also induced by the high sidelobes of the beam pattern, thus, limiting its dynamic range. CLEAN technique has been used in the literature to extract strong scatterers for use in subsequent signal cancelation (artifacts removal). However, the performance of DFT parameters estimation based CLEAN algorithm for the estimation of the signal amplitudes is known to be poor, and this affects the signal cancelation. In this paper, DFT is used only to provide the initial estimates, and the maximum likelihood parameters estimation method with steepest descent implementation is then used to improve the precision of the calculated scatterers positions and amplitudes. Time domain information is also used to reduce the sidelobe levels. As a result, clear, artifact-free images could be obtained. The effects of multiple reflections and rotation speed estimation error are also discussed. The proposed method has been verified using numerical simulations and it has been shown to be effective.


Subject(s)
Algorithms , Image Enhancement/methods , Image Interpretation, Computer-Assisted/methods , Imaging, Three-Dimensional/methods , Pattern Recognition, Automated/methods , Radar , Likelihood Functions , Reproducibility of Results , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...