Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Water Res ; 235: 119881, 2023 May 15.
Article in English | MEDLINE | ID: mdl-36963308

ABSTRACT

Emerging micropollutants (µPs) appearing in water bodies endanger aquatic animals, plants, microorganisms and humans. The nonthermal plasma-based advanced oxidation process is a promising technology for eliminating µPs in wastewater but still needs further development in view of full-scale industrial application. A novel cascade reactor design which consists of an ozonation chamber preceding a dielectric barrier discharge (DBD) plasma reactor with a falling water film on an activated carbon textile (Zorflex®) was used to remove a selection of µPs from secondary municipal wastewater effluent. Compare to previous plasma reactor, molecular oxidants degraded micropollutants again in an ozonation chamber in this study, and the utilization of different reactive oxygen species (ROS) was improved. A gas flow rate of 0.4 standard liter per minute (SLM), a water flow rate of 100 mL min-1, and a discharge power of 25 W are identified as the optimal plasma reactor parameters, and the µP degradation efficiency and electrical energy per order value (EE/O) are 84-98% and 2.4-5.3 kW/m³, respectively. The presence of ROS during plasma treatment was determined in view of the µPs removal mechanisms. The degradation of diuron (DIU), bisphenol A (BPA) and 2-n-octyl-4-isothiazolin-3-one (OIT) was mainly performed in ozonation chamber, while the degradation of atrazine (ATZ), alachlor (ALA) and primidone (PRD) occurred in entire cascade system. The ROS not only degrade the µPs, but also remove nitrite (90.5%), nitrate (69.6%), ammonium (39.6%) and bulk organics (11.4%). This study provides insights and optimal settings for an energy-efficient removal of µPs from secondary effluent using both free radicals and molecular oxidants generated by the plasma in view of full-scale application.


Subject(s)
Ozone , Water Pollutants, Chemical , Water Purification , Humans , Wastewater , Oxidants , Reactive Oxygen Species , Water , Water Pollutants, Chemical/analysis
2.
J Hazard Mater ; 451: 131100, 2023 Jun 05.
Article in English | MEDLINE | ID: mdl-36893595

ABSTRACT

Plasma-catalysis has been recognized as a promising method to decompose hazardous volatile organic compounds (VOCs) since many years ago. To understand the fundamental mechanisms of VOCs decomposition by plasma-catalysis systems, both experimental and modeling studies have been extensively carried out. However, literature on summarized modeling methodologies is still scarce. In this short review, we therefore present a comprehensive overview of modeling methodologies ranging from microscopic to macroscopic modeling in plasma-catalysis for VOCs decomposition. The modeling methods of VOCs decomposition by plasma and plasma-catalysis are classified and summarized. The roles of plasma and plasma-catalyst interactions in VOCs decomposition are also critically examined. Taking the current advances in understanding the decomposition mechanisms of VOCs into account, we finally provide our perspectives for future research directions. This short review aims to stimulate the further development of plasma-catalysis for VOCs decomposition in both fundamental studies and practical applications with advanced modeling methods.

3.
Prog Polym Sci ; 118: 101410, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33967350

ABSTRACT

Coronavirus disease 2019 (COVID-19) is largely threatening global public health, social stability, and economy. Efforts of the scientific community are turning to this global crisis and should present future preventative measures. With recent trends in polymer science that use plasma to activate and enhance the functionalities of polymer surfaces by surface etching, surface grafting, coating and activation combined with recent advances in understanding polymer-virus interactions at the nanoscale, it is promising to employ advanced plasma processing for smart antiviral applications. This trend article highlights the innovative and emerging directions and approaches in plasma-based surface engineering to create antiviral polymers. After introducing the unique features of plasma processing of polymers, novel plasma strategies that can be applied to engineer polymers with antiviral properties are presented and critically evaluated. The challenges and future perspectives of exploiting the unique plasma-specific effects to engineer smart polymers with virus-capture, virus-detection, virus-repelling, and/or virus-inactivation functionalities for biomedical applications are analysed and discussed.

SELECTION OF CITATIONS
SEARCH DETAIL
...