Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Publication year range
2.
J Neurosci Res ; 102(1): e25255, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37814990

ABSTRACT

Spinal cord injury (SCI) is a highly disabling central nervous system injury with a complex pathological process, resulting in severe sensory and motor dysfunction. The current treatment modalities only alleviate its symptoms and cannot effectively intervene or treat its pathological process. Many studies have reported that the transforming growth factor (TGF)-ß signaling pathway plays an important role in neuronal differentiation, growth, survival, and axonal regeneration after central nervous system injury. Furthermore, the TGF-ß signaling pathway has a vital regulatory role in SCI pathophysiology and neural regeneration. Following SCI, regulation of the TGF-ß signaling pathway can suppress inflammation, reduce apoptosis, prevent glial scar formation, and promote neural regeneration. Due to its role in SCI, the TGF-ß signaling pathway could be a potential therapeutic target. This article reported the pathophysiology of SCI, the characteristics of the TGF-ß signaling pathway, the role of the TGF-ß signaling pathway in SCI, and the latest evidence for targeting the TGF-ß signaling pathway for treating SCI. In addition, the limitations and difficulties in TGF-ß signaling pathway research in SCI are discussed, and solutions are provided to address these potential challenges. We hope this will provide a reference for the TGF-ß signaling pathway and SCI research, offering a theoretical basis for targeted therapy of SCI.


Subject(s)
Spinal Cord Injuries , Humans , Spinal Cord Injuries/metabolism , Apoptosis , Gliosis/metabolism , Signal Transduction/physiology , Transforming Growth Factor beta/metabolism , Spinal Cord/metabolism
3.
Pathol Res Pract ; 248: 154685, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37494803

ABSTRACT

Intervertebral disc degeneration (IDD), the key pathological process in low back pain, is characterized by chronic inflammation and progressive cell death. Pyroptosis is a type of pro-inflammatory programmed necrosis mediated by inflammasomes that is dependent on the gasdermin family of proteins. An in-depth study of the pathological mechanisms of IDD has revealed that pyroptosis plays an important role in its occurrence and development. The molecular characteristics and activation signaling mechanisms of pyroptosis are reviewed in this paper. Moreover, the specific roles of pyroptosis in IDD pathology are outlined and various targeted drugs for its treatment are highlighted.


Subject(s)
Intervertebral Disc Degeneration , Nucleus Pulposus , Humans , Intervertebral Disc Degeneration/drug therapy , Pyroptosis , Nucleus Pulposus/metabolism , Nucleus Pulposus/pathology , Apoptosis , Signal Transduction
4.
Hum Cell ; 35(5): 1364-1374, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35864416

ABSTRACT

Increasing evidence has shown that long non-coding RNAs (lncRNAs), which are non-coding endogenous single-stranded RNAs, play an essential role in various physiological and pathological processes through transcriptional interference, post-transcriptional regulation, and epigenetic modification. Moreover, lncRNAs, as oncogenes or tumor suppressor genes, play an important role in the occurrence and development of human cancers. Prostate androgen-regulated transcript 1 (PART1) was initially identified as a carcinogenic lncRNA in prostate adenomas. The upregulated expression of PART1 plays a tumor-promoting role in liver, prostate, lung cancers, and other tumors. In contrast, the expression of PART1 is downregulated in esophageal squamous cell carcinoma, glioma, and other tumors, which may inhibit the tumor. PART1 plays a dual role in cancer and regulates cell proliferation, apoptosis, invasion, and metastasis through a variety of potential mechanisms. These findings suggest that PART1 is a promising tumor biomarker and therapeutic target. This article reviews the biological functions, related mechanisms, and potential clinical significance of PART1 in a variety of human cancers.


Subject(s)
Esophageal Neoplasms , Esophageal Squamous Cell Carcinoma , RNA, Long Noncoding , Androgens , Cell Proliferation , Esophageal Neoplasms/genetics , Esophageal Squamous Cell Carcinoma/genetics , Gene Expression Regulation, Neoplastic/genetics , Humans , Male , Prostate/metabolism , RNA, Long Noncoding/physiology
5.
Sheng Li Xue Bao ; 74(2): 309-319, 2022 Apr 25.
Article in Chinese | MEDLINE | ID: mdl-35503079

ABSTRACT

Lipophagy is a kind of selective autophagy, which can selectively identify and degrade lipid droplets and plays an important role in regulating cellular lipid metabolism and maintaining intracellular lipid homeostasis. Exercise can induce lipophagy and it is also an effective means of reducing body fat. In this review, we summarized the relationship between exercise and lipophagy in the liver, pancreas, adipose tissue, and the possible molecular mechanisms to provide a new clue for the prevention and treatment of fatty liver, obesity and other related metabolic diseases by exercise.


Subject(s)
Lipid Metabolism , Metabolic Diseases , Autophagy/physiology , Humans , Lipid Droplets/metabolism , Lipid Metabolism/physiology , Liver , Metabolic Diseases/metabolism
6.
Sheng Li Xue Bao ; 73(5): 835-844, 2021 Oct 25.
Article in Chinese | MEDLINE | ID: mdl-34708241

ABSTRACT

The mitochondrial unfolded protein response is an important component of the mitochondrial protein quality control program. It can effectively remove unfolded or misfolded proteins under stress, and maintain a stable and healthy mitochondrial pool. The mitochondrial unfolded protein response is coordinated by multiple signaling pathways. The classical ATF4/ATF5-CHOP pathway is induced by accumulation of unfolded or misfolded proteins in the mitochondrial matrix, which reduces stress toxicity by regulating molecular chaperones and proteases. Sirt3-FOXO3a-SOD2 pathway, located in the mitochondrial matrix, plays an important role in anti-oxidative damage. The ERα-NRF1-HTRA2 pathway mainly removes unfolded proteins in the mitochondrial membrane space and improves the quality control of mitochondrial proteins. These three signaling pathways work both independently and cooperatively to enhance mitochondrial capacity and maintain health under stress.


Subject(s)
Mitochondria , Unfolded Protein Response , Mitochondrial Proteins/metabolism , Oxidative Stress , Signal Transduction
7.
Front Cell Dev Biol ; 9: 761273, 2021.
Article in English | MEDLINE | ID: mdl-34988074

ABSTRACT

Autophagy is an evolutionarily conserved lysosomal degradation pathway that maintains metabolism and homeostasis by eliminating protein aggregates and damaged organelles. Many studies have reported that autophagy plays an important role in spinal cord injury (SCI). However, the spatiotemporal patterns of autophagy activation after traumatic SCI are contradictory. Most studies show that the activation of autophagy and inhibition of apoptosis have neuroprotective effects on traumatic SCI. However, reports demonstrate that autophagy is strongly associated with distal neuronal death and the impaired functional recovery following traumatic SCI. This article introduces SCI pathophysiology, the physiology and mechanism of autophagy, and our current review on its role in traumatic SCI. We also discuss the interaction between autophagy and apoptosis and the therapeutic effect of activating or inhibiting autophagy in promoting functional recovery. Thus, we aim to provide a theoretical basis for the biological therapy of SCI.

8.
Nanoscale Res Lett ; 10: 143, 2015.
Article in English | MEDLINE | ID: mdl-25852432

ABSTRACT

The nucleation mechanism involving rapid solidification of undercooled La-Fe-Si melts has been studied experimentally and theoretically. The classical nucleation theory-based simulations show a competitive nucleation process between the α-(Fe,Si) phase (size approximately 10 to 30 nm) and the cubic NaZn13-type phase (hereinafter 1:13 phase, size approximately 200 to 400 nm) during rapid solidification, and that the undercooled temperature change ∆T plays an important factor in this process. The simulated results about the nucleation rates of the α-(Fe,Si) and 1:13 phases in La-Fe-Si ribbons fabricated by a melt-spinner using a copper wheel with a surface speed of 35 m/s agree well with the XRD, SEM, and TEM studies of the phase structure and microstructure of the ribbons. Our study paves the way for designing novel La-Fe-Si materials for a wide range of technological applications.

9.
Appl Microbiol Biotechnol ; 94(4): 1031-9, 2012 May.
Article in English | MEDLINE | ID: mdl-22258643

ABSTRACT

Antimicrobial peptides (AMPs) are widely expressed and play an important role in innate immune defense against infectious agents such as bacteria, viruses, fungi, and parasites. Cecropins are a family of AMPs synthesized in the fat body of insects that have proven effective at killing specific pathogens. In order to fulfill their clinical potential as antimicrobial drugs, a simple, cost-effective method to express AMPs is sorely needed. In this study, we expressed and characterized the cecropin from Plutella xylostella (pxCECA1) using an intein-dependent expression system in Escherichia coli. We cloned the pxCECA1 gene from larva by RT-PCR and fused the encoding sequence of mature pxCECA1 with an intein gene and a chitin-binding domain gene (CBD) in pTWIN1 plasmid. The fusion protein CBD-intein-pxCECA1 was expressed in E. coli BL21 (DE3) and separated by flowing cell extracts through a chitin column. Subsequently, self-cleavage of the intein at its C-terminus was induced in a temperature- and pH-dependent manner, resulting in the release of mature pxCECA1. The optimal conditions for self-cleavage were determined to be pH 6.0 for 48 h at 4°C, under which 12.3 mg of recombinant pxCECA1 could be recovered from 1 l of E. coli culture. The purified pxCECA1 displayed antimicrobial activity against a broad variety of gram-positive and gram-negative bacteria. This preparation was especially effective against Staphylococcus aureus, including methicillin-resistant strains. Catalase release assays demonstrated that pxCECA1 acts as a microbicidal agent. These results show for the first time that the IMPACT-TWIN expression system is an efficient, cost-effective way to produce fully functional AMPs and that the AMP pxCECA1 is a novel microbicidal agent with promising therapeutic applications.


Subject(s)
Cecropins/genetics , Cecropins/isolation & purification , Escherichia coli/metabolism , Gene Expression , Lepidoptera/chemistry , Lepidoptera/genetics , Animals , Cloning, Molecular , Escherichia coli/genetics , Gram-Negative Bacteria/drug effects , Gram-Positive Bacteria/drug effects , Hydrogen-Ion Concentration , Inteins , Microbial Sensitivity Tests , Molecular Sequence Data , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Sequence Analysis, DNA , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...